On the commutation graph of cyclic $TI$-subgroups in unitary groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 119-124

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the commutation graph $\Gamma(A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasi-simple generalized Fitting subgroup $F^*(G)$ is investigated on subject of the symmetric property. We prove that, if $F^*(G)$ is a unitary group, then the graph $\Gamma(A)$ is either a coclique or an edge-regular but not coedge-regular graph.
Keywords: finite group, cyclic $TI$-subgroup, commutation graph.
@article{TIMM_2012_18_3_a13,
     author = {N. D. Zyulyarkina},
     title = {On the commutation graph of cyclic $TI$-subgroups in unitary groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
TI  - On the commutation graph of cyclic $TI$-subgroups in unitary groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 119
EP  - 124
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/
LA  - ru
ID  - TIMM_2012_18_3_a13
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%T On the commutation graph of cyclic $TI$-subgroups in unitary groups
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 119-124
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/
%G ru
%F TIMM_2012_18_3_a13
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in unitary groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 119-124. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/