On the commutation graph of cyclic $TI$-subgroups in unitary groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 119-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work the commutation graph $\Gamma(A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasi-simple generalized Fitting subgroup $F^*(G)$ is investigated on subject of the symmetric property. We prove that, if $F^*(G)$ is a unitary group, then the graph $\Gamma(A)$ is either a coclique or an edge-regular but not coedge-regular graph.
Keywords: finite group, cyclic $TI$-subgroup, commutation graph.
@article{TIMM_2012_18_3_a13,
     author = {N. D. Zyulyarkina},
     title = {On the commutation graph of cyclic $TI$-subgroups in unitary groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--124},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
TI  - On the commutation graph of cyclic $TI$-subgroups in unitary groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 119
EP  - 124
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/
LA  - ru
ID  - TIMM_2012_18_3_a13
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%T On the commutation graph of cyclic $TI$-subgroups in unitary groups
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 119-124
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/
%G ru
%F TIMM_2012_18_3_a13
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in unitary groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 119-124. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/

[1] Zyulyarkina N. D., Makhnev A. A., “Plotno vlozhennye podgruppy s abelevym sliyaniem”, Tr. Instituta matematiki i mekhaniki UrO RAN, 2, 1992, 19–26 | MR | Zbl

[2] Zyulyarkina N. D., Makhnev A. A., “Tsiklicheskie $TI$-podgruppy poryadka 4 v isklyuchitelnykh gruppakh Shevalle”, Tr. Instituta matematiki i mekhaniki UrO RAN, 3, 1994, 41–49 | MR | Zbl

[3] Zyulyarkina N. D., “Tsiklicheskie $TI$-podgruppy poryadka 4 v klassicheskikh gruppakh Shevalle nechetnoi kharakteristiki”, Voprosy algebry i logiki, Tr. In-ta matematiki im. S. L. Soboleva, Izd-vo In-ta matematiki, Novosibirsk, 1996, 89–110

[4] Zyulyarkina N. D., “O grafe kommutirovaniya tsiklicheskikh $TI$-podgrupp v lineinykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 114–120

[5] Lidl R., Niderraiter G., Konechnye polya, v 2 t., Mir, M., 1988, 808 pp. | Zbl

[6] Makhnev A. A., “$TI$-podgruppy v gruppakh tipa kharakteristiki 2”, Mat. sb., 127(169):2 (1985), 239–244 | MR | Zbl

[7] Harris M. E., “Finite groups containing an intrinsic 2-component of Chevalley type over field of odd order”, Trans. of the Amer. Math. Soc., 272:1 (1982), 1–65 | MR | Zbl