On the commutation graph of cyclic $TI$-subgroups in unitary groups
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 119-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work the commutation graph $\Gamma(A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasi-simple generalized Fitting subgroup $F^*(G)$ is investigated on subject of the symmetric property. We prove that, if $F^*(G)$ is a unitary group, then the graph $\Gamma(A)$ is either a coclique or an edge-regular but not coedge-regular graph.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, cyclic $TI$-subgroup, commutation graph.
                    
                  
                
                
                @article{TIMM_2012_18_3_a13,
     author = {N. D. Zyulyarkina},
     title = {On the commutation graph of cyclic $TI$-subgroups in unitary groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/}
}
                      
                      
                    N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in unitary groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 119-124. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a13/
