Octahedral and Euclidean projections of a point to a linear manifold
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 106-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Many applied problems reduce to the general geometric problem of finding a point of a linear manifold in a finite-dimensional space that is closest to the origin. There are many specific formulations of this problem, including the search for octahedral and Euclidean projections, i.e., vectors of the linear manifold with smallest octahedral and Euclidean norms. We consider the properties of solutions to the problem of finding points of linear manifolds that are closest to the origin and relations between these solutions under various specifications of the problem. In particular, we study the properties of octahedral and Euclidean projections and analyze the influence on these projections of variation of weight coefficients in the norms.
Keywords: linear manifold, projections, Euclidean norms, octahedral norms.
@article{TIMM_2012_18_3_a12,
     author = {V. I. Zorkal'tsev},
     title = {Octahedral and {Euclidean} projections of a~point to a~linear manifold},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--118},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a12/}
}
TY  - JOUR
AU  - V. I. Zorkal'tsev
TI  - Octahedral and Euclidean projections of a point to a linear manifold
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 106
EP  - 118
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a12/
LA  - ru
ID  - TIMM_2012_18_3_a12
ER  - 
%0 Journal Article
%A V. I. Zorkal'tsev
%T Octahedral and Euclidean projections of a point to a linear manifold
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 106-118
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a12/
%G ru
%F TIMM_2012_18_3_a12
V. I. Zorkal'tsev. Octahedral and Euclidean projections of a point to a linear manifold. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 106-118. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a12/

[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.

[2] Batreeva I. V., Bedenkov A. R., Zorkaltsev V. I., Sadov S. L., Soglasovanie chastnykh prognozov v balansovykh modelyakh, Komi NTs UrO AN SSSR, Syktyvkar, 1990, 27 pp.

[3] Zorkaltsev V. I., Chernikova L. I., Renta, nalogi i struktura tsen, SEI SO RAN, Irkutsk, 1991, 22 pp.

[4] Zorkaltsev V. I., Metod naimenshikh kvadratov i ego konkurenty, SEI SO RAN, Irkutsk, 1993, 30 pp.

[5] Zorkaltsev V. I., “Naimenee udalennye ot nachala koordinat tochki lineinogo mnogoobraziya”, Zhurn. vychisl. matematiki i mat. fiziki, 35:5 (1995), 801–810 | MR | Zbl

[6] Zorkaltsev V. I., Metod naimenshikh kvadratov: geometricheskie svoistva, alternativnye podkhody, prilozheniya, Nauka, Novosibirsk, 1995, 220 pp. | MR

[7] Zorkaltsev V. I., “Proektsii nachala koordinat na poliedr”, Metody optimizatsii i ikh prilozheniya, Sb. tr. XV Baikalskoi mezhdunar. shkoly-seminara, v. 2, Mat. programmirovanie, IDSTU SO RAN, Irkutsk, 2011, 96–101

[8] Zorkaltsev V. I., “Naimenee udalennye ot nachala koordinat resheniya sistemy lineinykh neravenstv”, Izv. Irkut. gos. un-ta. Ser. mat., 4:2 (2011), 102–103

[9] Zorkaltsev V. I., Kiselëva M. A., Sistemy lineinykh neravenstv, Ucheb. posobie, IGU, Irkutsk, 2007, 128 pp.

[10] Lakeev A. V., Noskov S. I., “Metod naimenshikh modulei dlya lineinoi regressii: chislo nulevykh oshibok approksimatsii”, Metody optimizatsii i ikh prilozheniya, Sb. tr. XV Baikalskoi mezhdunar. shkoly-seminara, v. 2, Mat. programmirovanie, IDSTU SO RAN, Irkutsk, 2011, 117–120

[11] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968, 480 pp. | MR | Zbl

[12] Zorkaltsev V. I., Otnositelno vnutrennyaya tochka optimalnykh reshenii, Komi fil. AN SSSR, Syktyvkar, 1984, 48 pp.