On finite groups with disconnected prime graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 99-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

All finite simple nonabelian groups that have the same prime graph as a Frobenius group or a $2$-Frobenius group are found.
Keywords: finite simple group, prime graph
Mots-clés : Frobenius group, $2$-Frobenius group.
@article{TIMM_2012_18_3_a11,
     author = {M. R. Zinov'eva and V. D. Mazurov},
     title = {On finite groups with disconnected prime graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--105},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a11/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
AU  - V. D. Mazurov
TI  - On finite groups with disconnected prime graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 99
EP  - 105
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a11/
LA  - ru
ID  - TIMM_2012_18_3_a11
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%A V. D. Mazurov
%T On finite groups with disconnected prime graph
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 99-105
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a11/
%G ru
%F TIMM_2012_18_3_a11
M. R. Zinov'eva; V. D. Mazurov. On finite groups with disconnected prime graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 99-105. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a11/

[1] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[2] Busarkin V. M., Gorchakov Yu. N., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 180 pp. | MR

[3] Gruenberg K. W., Roggenkamp K. W., “Decomposition of the augmentation ideal and the relation modules of a finite group”, Proc. London Math. Soc., 31 (1975), 149–166 | DOI | MR | Zbl

[4] Aleeva M. R., “O konechnykh prostykh gruppakh s mnozhestvom poryadkov elementov, kak u gruppy Frobeniusa ili dvoinoi gruppy Frobeniusa”, Mat. zametki, 73:3 (2003), 323–339 | DOI | MR | Zbl

[5] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[6] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 794 pp. | MR | Zbl

[7] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[8] Kondratev A. S., Mazurov V. D., “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. mat. zhurn., 41:2 (2000), 359–369 | MR | Zbl

[9] Vasilev A. V., Vdovin E. P., “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[10] Vasilev A. V., Vdovin E. P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR

[11] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR

[12] Aleeva M. R., “O kompozitsionnykh faktorakh konechnykh grupp s mnozhestvom poryadkov elementov, kak u gruppy $U_3(q)$ dlya nechetnogo $q$”, Sib. mat. zhurn., 43:2 (2002), 249–267 | MR | Zbl