$ABA$-groups with cyclic subgroup $B$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 10-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some criteria to the solubility of groups of the form $G=ABA$ with a nilpotent subgroup $A$ and a cyclic subgroup $B$ are derived. In particular, it is proved (using the classification of the finite simple groups) that the finite group $G=ABA$ is soluble if $A$ is a nilpotent group of odd order and $B$ is a cyclic group and $(|A|,|B|)=1$.
Mots-clés : simple group, Lie type group, sporadic simple group.
@article{TIMM_2012_18_3_a1,
     author = {B. Amberg and L. S. Kazarin},
     title = {$ABA$-groups with cyclic subgroup~$B$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {10--22},
     year = {2012},
     volume = {18},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/}
}
TY  - JOUR
AU  - B. Amberg
AU  - L. S. Kazarin
TI  - $ABA$-groups with cyclic subgroup $B$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 10
EP  - 22
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/
LA  - en
ID  - TIMM_2012_18_3_a1
ER  - 
%0 Journal Article
%A B. Amberg
%A L. S. Kazarin
%T $ABA$-groups with cyclic subgroup $B$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 10-22
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/
%G en
%F TIMM_2012_18_3_a1
B. Amberg; L. S. Kazarin. $ABA$-groups with cyclic subgroup $B$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 10-22. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/

[1] Alavi S. H., Praeger C. E., “On triple factorizations of finite groups”, J. Group Theory, 14:3 (2011), 341–360 | DOI | MR | Zbl

[2] Amberg B., Kazarin L., “On the product of a nilpotent group and a group with non-trivial center”, J. Algebra, 311:1 (2007), 69–95 | DOI | MR | Zbl

[3] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 250 pp. | MR | Zbl

[4] Baumann B., “Endliche nichtauflosbare Gruppen mit einer nilpotenten maximalen Untergruppe”, J. Algebra, 38:1 (1976), 119–135 | DOI | MR | Zbl

[5] Brauer R., Fong P., “On the centralizers of $p$-elements in finite groups”, Bull. London Math. Soc., 6 (1974), 319–324 | DOI | MR | Zbl

[6] Li C. H., Zhang H., “The finite primitive groups with soluble stabilizers and the edge-primitive $s$-arc transitive graphs”, Proc. London Math. Soc. (3), 103:3 (2011), 441–472 | DOI | MR | Zbl

[7] Camina A., Shumyatsky P., Sica C., “On elements of prime power index in finite groups”, J. Algebra, 323:2 (2010), 522–525 | DOI | MR | Zbl

[8] Carter R., Simple groups of Lie type, Wiley-Interscience, New York, 1972, 364 pp. | MR | Zbl

[9] Flavell P., Robinson G. R., “Fixed points and coprime automorphisms and geneneralization of Glauberman's $Z^*$-theorem”, J. Algebra, 226:2 (2000), 714–718 | DOI | MR | Zbl

[10] Gorenstein D., Herstein I. N., “A class of solvable groups”, Canad. J. Math., 11 (1959), 311–320 | DOI | MR | Zbl

[11] Gorenstein D., “On finite groups of the form $ABA$”, Canad. J. Math., 14 (1962), 195–236 | DOI | MR | Zbl

[12] Guterman M., “On $ABA$-groups of finite order”, Trans. Amer. Math. Soc., 139 (1969), 109–143 | MR | Zbl

[13] Guralnick R. M., Malle G., Navarro G., “Self-normalizing Sylow subgroups”, Proc. Amer. Math. Soc., 132:4 (2004), 973–979 | DOI | MR | Zbl

[14] Kazarin L. S., “Burnsides $p^\alpha$-lemma”, Math. Notes, 48:1–2 (1990), 749–751 | DOI | MR | Zbl

[15] Kazarin L. S., “On the product of two groups that are close to being nilpotent”, Mathematics of the USSR-Sbornik, 38:1 (1981), 47–59 | DOI | MR | Zbl

[16] Kleidman P. B., “The maximal subgroups of the finite 8-dimensional orthogonal $P\Omega^+_8(q)$ and their automorphism groups”, J. Algebra, 110:1 (1987), 173–242 | DOI | MR | Zbl

[17] Seitz G. M., “The root subgroups of maximal tori in finite groups of Lie type”, Pacific J. Math., 106:1 (1983), 153–244 | DOI | MR | Zbl

[18] Shult E., “On finite automorphic algebras”, Ill. J. Math., 13 (1969), 625–653 | MR | Zbl

[19] Steinberg R., Lectures on Chevalley groups, Yale University, Yale, 1967, 554 pp. | MR

[20] Suzuki M., “On a class of double transitive groups”, Ann. of Math. (2), 75:1 (1962), 105–145 | DOI | MR | Zbl

[21] Sysak Ya. P., “Finite groups of the form $ABA$”, Algebra and Logic, 21:3 (1982), 234–241 | DOI | MR | Zbl

[22] Sysak Ya. P., “O stroenii konechnykh $ABA$-grupp s abelevoi podgruppoi $A$ i tsiklicheskoi podgruppoi $B$”, Stroenie grupp i ikh podgruppovaya kharakterizatsiya, In-t matematiki AN USSR, Kiev, 1984, 33–46 | MR

[23] Vdovin E. P., “Large nilpotent subgroups of finite simple groups”, Algebra and Logic, 39:5 (2000), 301–312 | DOI | MR

[24] Vdovin E. P., “Maximal orders of abelian subgroups in finite simple groups”, Algebra and Logic, 38:2 (1999), 67–83 | DOI | MR | Zbl

[25] Ward H. N., “On Rees series of simple groups”, Trans. Amer. Math. Soc., 121 (1966), 62–80 | MR

[26] Zagorin D. L., Kazarin L. S., “Abelevy $ABA$-faktorizatsii konechnykh grupp”, Dokl. AN SSSR, 45:5 (1996), 590–592 | MR