$ABA$-groups with cyclic subgroup~$B$
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 10-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Some criteria to the solubility of groups of the form $G=ABA$ with a nilpotent subgroup $A$ and a cyclic subgroup $B$ are derived. In particular, it is proved (using the classification of the finite simple groups) that the finite group $G=ABA$ is soluble if $A$ is a nilpotent group of odd order and $B$ is a cyclic group and $(|A|,|B|)=1$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
simple group, Lie type group, sporadic simple group.
                    
                  
                
                
                @article{TIMM_2012_18_3_a1,
     author = {B. Amberg and L. S. Kazarin},
     title = {$ABA$-groups with cyclic subgroup~$B$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {10--22},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/}
}
                      
                      
                    B. Amberg; L. S. Kazarin. $ABA$-groups with cyclic subgroup~$B$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 10-22. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/
