$ABA$-groups with cyclic subgroup~$B$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 10-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Some criteria to the solubility of groups of the form $G=ABA$ with a nilpotent subgroup $A$ and a cyclic subgroup $B$ are derived. In particular, it is proved (using the classification of the finite simple groups) that the finite group $G=ABA$ is soluble if $A$ is a nilpotent group of odd order and $B$ is a cyclic group and $(|A|,|B|)=1$.
Mots-clés : simple group, Lie type group, sporadic simple group.
@article{TIMM_2012_18_3_a1,
     author = {B. Amberg and L. S. Kazarin},
     title = {$ABA$-groups with cyclic subgroup~$B$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {10--22},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/}
}
TY  - JOUR
AU  - B. Amberg
AU  - L. S. Kazarin
TI  - $ABA$-groups with cyclic subgroup~$B$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 10
EP  - 22
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/
LA  - en
ID  - TIMM_2012_18_3_a1
ER  - 
%0 Journal Article
%A B. Amberg
%A L. S. Kazarin
%T $ABA$-groups with cyclic subgroup~$B$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 10-22
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/
%G en
%F TIMM_2012_18_3_a1
B. Amberg; L. S. Kazarin. $ABA$-groups with cyclic subgroup~$B$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 10-22. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a1/