Regular asymptotics of a generalized solution of the stationary Navier–Stokes system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 108-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A regular asymptotic series is constructed for a generalized solution of the stationary system of Navier–Stokes equations in a bounded domain of three-dimensional space under a constraint on the generalized Reynolds number. A theorem on the approximation to any degree of accuracy of the exact solution of a homogeneous boundary value problem by partial sums of the series is proved.
Keywords: Navier–Stokes system, generalized solution, asymptotics.
@article{TIMM_2012_18_2_a9,
     author = {S. V. Zakharov},
     title = {Regular asymptotics of a~generalized solution of the stationary {Navier{\textendash}Stokes} system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {108--113},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a9/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Regular asymptotics of a generalized solution of the stationary Navier–Stokes system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 108
EP  - 113
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a9/
LA  - ru
ID  - TIMM_2012_18_2_a9
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Regular asymptotics of a generalized solution of the stationary Navier–Stokes system
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 108-113
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a9/
%G ru
%F TIMM_2012_18_2_a9
S. V. Zakharov. Regular asymptotics of a generalized solution of the stationary Navier–Stokes system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 108-113. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a9/

[1] Ladyzhenskaya O. A., “Shestaya problema tysyacheletiya: uravneniya Nave–Stoksa, suschestvovanie i gladkost”, Uspekhi mat. nauk, 58:2 (2003), 45–78 | DOI | MR | Zbl

[2] Chebotarev A. Yu., Illarionov A. A., Amosova E. V., “Variatsionnye neravenstva, kraevye zadachi i optimalnoe upravlenie dlya sistemy Nave–Stoksa”, Dalnevost. mat. zhurn., 8:1 (2008), 121–140 | MR

[3] Vainberger G. F., Gilbarg D., “Asimptoticheskie svoistva reshenii Lere statsionarnykh dvumernykh uravnenii Nave–Stoksa”, Uspekhi mat. nauk, 29:2 (1974), 109–122 | MR | Zbl

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961, 204 pp.

[5] Pukhnachëv V. V., Lektsii po dinamike vyazkoi neszhimaemoi zhidkosti, Ch. 1, Izd-vo Novosib. gos. un-ta, Novosibirsk, 1969, 198 pp.

[6] Gilbarg D., Trudinger N. S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl

[7] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Leningr. gos. un-ta, L., 1950, 255 pp. | MR