Difference fitting scheme for a singularly perturbed problem with turning point
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 80-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A singularly perturbed problem with turning point is considered. The solution has two exponential type boundary layers of different orders in neighborhoods of boundary points. The problem is solved approximately by means of a difference scheme of exponential fitting on a uniform grid. It is proved that the solutions obtained from this scheme converge uniformly with respect to the perturbation parameter to the solution of the original differential problem as the grid step tends to zero.
Keywords: singularly perturbed problem for second-order ordinary differential equation, asymptotic expansion, difference scheme.
@article{TIMM_2012_18_2_a7,
     author = {K. V. Emel'yanov},
     title = {Difference fitting scheme for a~singularly perturbed problem with turning point},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {80--91},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a7/}
}
TY  - JOUR
AU  - K. V. Emel'yanov
TI  - Difference fitting scheme for a singularly perturbed problem with turning point
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 80
EP  - 91
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a7/
LA  - ru
ID  - TIMM_2012_18_2_a7
ER  - 
%0 Journal Article
%A K. V. Emel'yanov
%T Difference fitting scheme for a singularly perturbed problem with turning point
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 80-91
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a7/
%G ru
%F TIMM_2012_18_2_a7
K. V. Emel'yanov. Difference fitting scheme for a singularly perturbed problem with turning point. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 80-91. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a7/

[1] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 232 pp.

[4] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl

[5] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1968, 464 pp.

[6] Emelyanov K. V., “Raznostnaya skhema dlya odnoi singulyarno vozmuschennoi zadachi s tochkoi povorota”, Tez. dokl. Vseros. shk.-konf. mol. issledovatelei i V Vseros. konf. “Aktualnye problemy prikladnoi matematiki i mekhaniki”, posvyasch. pamyati ak. A. F. Sidorova, IMM UrO RAN, Ekaterinburg, 2010, 37–39

[7] Emelyanov K. V., “O skheme eksponentsialnoi podgonki dlya odnoi singulyarno vozmuschennoi zadachi”, Zhurn. vychisl. matematiki i mat. fiziki, 45:4 (2005), 669–676 | MR | Zbl

[8] Shishkin G. I., Titov V. A., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri proizvodnykh”, Chislennye metody mekhaniki sploshnoi sredy, 1:2 (1976), 145–155

[9] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 553 pp. | MR | Zbl