Asymptotic representation of a~solution to a~singular perturbation linear time-optimal problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 67-79

Voir la notice de l'article provenant de la source Math-Net.Ru

A time-optimal control problem is considered for a linear system with fast and slow variables and smooth geometric constraints on the control. An asymptotic expansion of the optimal time up to the second order of smallness is constructed and validated.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2012_18_2_a6,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotic representation of a~solution to a~singular perturbation linear time-optimal problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a6/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotic representation of a~solution to a~singular perturbation linear time-optimal problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 67
EP  - 79
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a6/
LA  - ru
ID  - TIMM_2012_18_2_a6
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotic representation of a~solution to a~singular perturbation linear time-optimal problem
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 67-79
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a6/
%G ru
%F TIMM_2012_18_2_a6
A. R. Danilin; O. O. Kovrizhnykh. Asymptotic representation of a~solution to a~singular perturbation linear time-optimal problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 67-79. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a6/