Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 62-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The action of an external parametric perturbation with slowly changing frequency on a soliton of the nonlinear Schrödinger equation is studied. Equations for the time evolution of the parameters of the perturbed soliton are derived. Conditions for the soliton phase locking are found, which relate the rate of change of the perturbation frequency, its amplitude, the wave number, and the phase to the initial data of the soliton. The cases when the initial amplitude of the soliton is small and when the amplitude of the soliton is of the order of unity are considered.
Keywords: autoresonance, nonlinear Schrödinger equation
Mots-clés : perturbation, soliton.
@article{TIMM_2012_18_2_a5,
     author = {R. N. Garifullin},
     title = {Autoresonance excitation of a~soliton of the nonlinear {Schr\"odinger} equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {62--66},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a5/}
}
TY  - JOUR
AU  - R. N. Garifullin
TI  - Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 62
EP  - 66
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a5/
LA  - ru
ID  - TIMM_2012_18_2_a5
ER  - 
%0 Journal Article
%A R. N. Garifullin
%T Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 62-66
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a5/
%G ru
%F TIMM_2012_18_2_a5
R. N. Garifullin. Autoresonance excitation of a soliton of the nonlinear Schrödinger equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 62-66. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a5/

[1] Garifullin R. N., Kalyakin L. A., Shamsutdinov M. A., “Avtorezonansnoe vozbuzhdenie brizera v slabykh ferromagnetikakh”, Zhurn. vychisl. matematiki i mat. fiziki, 47:7 (2007), 1208–1220 | MR

[2] Batalov S. V., Maslov E. M., Shagalov A. G., “Avtofazirovka solitonov”, Zhurn. eksperiment. i teoret. fiziki, 135:5 (2009), 1021–1028

[3] Karpman V. I., Maslov E. M., “Teoriya vozmuschenii dlya solitonov”, Zhurn. eksperiment. i teoret. fiziki, 73:2(8) (1977), 537–559 | MR

[4] Veksler B. I., “O novom metode uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43 (1944), 346–348

[5] Veksler B. I., “O novom metode uskoreniya chastits”, Dokl. AN SSSR, 44:9 (1944), 393–396

[6] McMillan E. M., “Resonance acceleration of charged particles”, Phys. Rev., 70 (1946), 800

[7] Golovanevskii K. S., “Giromagnitnyi avtorezonans s peremennoi chastotoi”, Fizika plazmy, 11:3 (1985), 295–299

[8] Fajans J., Friedland L., “Autoresonant (non stationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[9] Meerson B., Friedland L., “Strong autoresonance excitation of Rydberg atoms: the rydberg accelerator”, Phys. Rev. A, 41 (1990), 5233–5236 | DOI

[10] Kalyakin L. A., “Avtorezonans v dinamicheskoi sisteme”, Sovremennaya matematika i ee prilozheniya, 5, 2003, 79–108

[11] Kalyakin L. A., “Justification of asymptotic expansions for the principal resonance equations”, Proc. Steklov Inst. Math., 2003, S108–S122 | MR | Zbl

[12] Garifullin R. N., “Postroenie asimptoticheskikh reshenii v zadache ob avtorezonanse”, Dokl. RAN, 398:3 (2004), 306–309 | MR

[13] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi mat. nauk, 63:5 (2008), 3–72 | DOI | MR | Zbl

[14] Elbert A. E., Danilin A. R., “Avtofazirovka solitonov s optimizatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 288–296

[15] Glebov S. G., Kiselev O. M., Lazarev V. A., “Slow passage through resonance for a weakly nonlinear dispersive wave”, SIAM J. Appl. Math., 65:6 (2005), 2158–2177 | DOI | MR | Zbl

[16] Glebov S., Kiselev O., Tarkhanov N., “Weakly nonlinear dispersive waves under parametric resonance perturbation”, Stud. Appl. Math., 124:1 (2010), 19–37 | DOI | MR | Zbl

[17] Kiselev O. M., Glebov S. G., Lazarev V. A., Resonant pumping in nonlinear Klein–Gordon equation and solitary packets of waves, 2004, 21 pp., arXiv: math-ph/0410041v1

[18] Kalyakin L. A., Shamsutdinov M. A., Garifullin R. N., Salimov R. K., “Avtorezonansnoe parametricheskoe vozbuzhdenie lokalizovannykh kolebanii namagnichennosti v ferromagnetike polem peremennoi chastoty”, Fizika metallov i metallovedenie, 104:2 (2007), 115–128

[19] Bagderina Yu. Yu., “Integriruemye uravneniya glavnogo rezonansa”, Mat. zametki, 80:3 (2006), 465–468 | DOI | MR | Zbl

[20] Garifullin R. N., “Issledovanie rosta reshenii nelineinogo uravneniya v zavisimosti ot nachalnykh dannykh”, Regionalnaya shk.-konf. dlya studentov, aspirantov i molodykh uchenykh po matematike i fizike, Sb. tr., v. 1, Matematika, Ufa, 2003, 189–195