On Friedrichs inequalities for a disk
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 48-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Friedrichs inequality for functions defined on a disk of unit radius $\Omega$ and equal to zero on almost all boundary except for an arc $\gamma_\varepsilon$ of length $\varepsilon$, where $\varepsilon$ is a small parameter. Using the method of matched asymptotic expansions, we construct a two-term asymptotics for the Friedrichs constant $C(\Omega,\partial\Omega\backslash\overline\gamma_\varepsilon)$ for such functions and present a strict proof of its validity. We show that $C(\Omega,\partial\Omega\backslash\overline\gamma_\varepsilon)=C(\Omega,\partial\Omega)+\varepsilon^2C(\Omega,\partial\Omega)(1+O(\varepsilon^{2/7}))$. The calculation of the asymptotics for the Friedrichs constant is reduced to constructing an asymptotics for the minimum value of the operator $-\Delta$ in the disk with Neumann boundary condition on $\gamma_\varepsilon$ and Dirichlet boundary condition on the remaining part of the boundary.
Keywords: Friedrichs inequality, small parameter, eigenvalue, asymptotics.
@article{TIMM_2012_18_2_a4,
     author = {R. R. Gadyl'shin and E. A. Shishkina},
     title = {On {Friedrichs} inequalities for a~disk},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--61},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a4/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
AU  - E. A. Shishkina
TI  - On Friedrichs inequalities for a disk
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 48
EP  - 61
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a4/
LA  - ru
ID  - TIMM_2012_18_2_a4
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%A E. A. Shishkina
%T On Friedrichs inequalities for a disk
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 48-61
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a4/
%G ru
%F TIMM_2012_18_2_a4
R. R. Gadyl'shin; E. A. Shishkina. On Friedrichs inequalities for a disk. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 48-61. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a4/

[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[2] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 391 pp. | MR

[3] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Mat. zametki, 52:4 (1992), 42–55 | MR | Zbl

[4] Gadylshin R. R., “Spektr ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii granichnykh uslovii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, BNTs UrO AN SSSR, Ufa, 1988, 3–15

[5] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl

[6] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[7] Planida M. Yu., “Asimptotiki sobstvennykh elementov operatora Laplasa so smenoi tipa granichnogo usloviya na uzkoi uploschennoi polose”, Mat. zametki, 75:2 (2004), 236–252 | DOI | MR | Zbl