Error estimate for approximations of an optimal stabilizing control in a delay system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of averaging approximations is used for solving the problem of optimal stabilization of a delay system of differential equations. The exact solution is approximated by solutions of optimal stabilization problems for systems of ordinary differential equations. The rate of convergence of approximating controls to an optimal control is found.
Keywords: delay differential equations, optimal stabilization, functional state space, finite-dimensional approximations.
@article{TIMM_2012_18_2_a3,
     author = {D. S. Bykov and Yu. F. Dolgii},
     title = {Error estimate for approximations of an optimal stabilizing control in a~delay system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {38--47},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/}
}
TY  - JOUR
AU  - D. S. Bykov
AU  - Yu. F. Dolgii
TI  - Error estimate for approximations of an optimal stabilizing control in a delay system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 38
EP  - 47
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/
LA  - ru
ID  - TIMM_2012_18_2_a3
ER  - 
%0 Journal Article
%A D. S. Bykov
%A Yu. F. Dolgii
%T Error estimate for approximations of an optimal stabilizing control in a delay system
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 38-47
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/
%G ru
%F TIMM_2012_18_2_a3
D. S. Bykov; Yu. F. Dolgii. Error estimate for approximations of an optimal stabilizing control in a delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 38-47. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/

[1] Krasovskii N. N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26 (1962), 39–51 | MR

[2] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28 (1964), 716–724 | MR

[3] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR

[4] Gibson J. S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optim., 21:1 (1983), 95–139 | DOI | MR | Zbl

[5] Krasovskii N. N., “Problemy stabilizatsii upravlyaemykh dvizhenii”, Dopolnenie k knige: I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 530 pp. | MR

[6] Lasiecka I., Manitius A., “Differentiability and convergence rates of approximating semigroups for retarded functional differential equations”, SIAM J. Numerical Anal., 25:4 (1988), 883–907 | DOI | MR | Zbl

[7] Salamon D., “Structure and stability of finite dimensional approximations for functional differential equations”, SIAM J. Control Optim., 23:6 (1984), 928–951 | DOI | MR

[8] Kappel F., Salamon D., “Spline approximation for retarded systems and the Riccati equation”, SIAM J. Control Optim., 25:4 (1987), 1082–1117 | DOI | MR | Zbl

[9] Propst G., “Piecewise linear approximation for hereditary control problems”, SIAM J. Control Optim., 28:1 (1990), 70–96 | DOI | MR

[10] Ito K., Teglas R., “Legendre-tau approximations for functional differentional equations”, SIAM J. Control Optim., 28:4 (1986), 737–759 | DOI | MR

[11] Ito K., Teglas R., “Legendre-tau approximation for functional differential equations. Part II: The linear quadratic optimal control problem”, SIAM J. Control Optim., 25:6 (1987), 1379–1408 | DOI | MR | Zbl

[12] Kroller M., Kunisch K., “Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations”, SIAM J. Numerical Anal., 28:5 (1991), 1350–1385 | DOI | MR | Zbl

[13] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 499 pp. | MR

[14] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[15] Danford N., Shvarts Dzh., Lineinye operatory, IL, M., 1962, 895 pp.