@article{TIMM_2012_18_2_a3,
author = {D. S. Bykov and Yu. F. Dolgii},
title = {Error estimate for approximations of an optimal stabilizing control in a~delay system},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {38--47},
year = {2012},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/}
}
TY - JOUR AU - D. S. Bykov AU - Yu. F. Dolgii TI - Error estimate for approximations of an optimal stabilizing control in a delay system JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 38 EP - 47 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/ LA - ru ID - TIMM_2012_18_2_a3 ER -
D. S. Bykov; Yu. F. Dolgii. Error estimate for approximations of an optimal stabilizing control in a delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 38-47. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a3/
[1] Krasovskii N. N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26 (1962), 39–51 | MR
[2] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28 (1964), 716–724 | MR
[3] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR
[4] Gibson J. S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optim., 21:1 (1983), 95–139 | DOI | MR | Zbl
[5] Krasovskii N. N., “Problemy stabilizatsii upravlyaemykh dvizhenii”, Dopolnenie k knige: I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 530 pp. | MR
[6] Lasiecka I., Manitius A., “Differentiability and convergence rates of approximating semigroups for retarded functional differential equations”, SIAM J. Numerical Anal., 25:4 (1988), 883–907 | DOI | MR | Zbl
[7] Salamon D., “Structure and stability of finite dimensional approximations for functional differential equations”, SIAM J. Control Optim., 23:6 (1984), 928–951 | DOI | MR
[8] Kappel F., Salamon D., “Spline approximation for retarded systems and the Riccati equation”, SIAM J. Control Optim., 25:4 (1987), 1082–1117 | DOI | MR | Zbl
[9] Propst G., “Piecewise linear approximation for hereditary control problems”, SIAM J. Control Optim., 28:1 (1990), 70–96 | DOI | MR
[10] Ito K., Teglas R., “Legendre-tau approximations for functional differentional equations”, SIAM J. Control Optim., 28:4 (1986), 737–759 | DOI | MR
[11] Ito K., Teglas R., “Legendre-tau approximation for functional differential equations. Part II: The linear quadratic optimal control problem”, SIAM J. Control Optim., 25:6 (1987), 1379–1408 | DOI | MR | Zbl
[12] Kroller M., Kunisch K., “Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations”, SIAM J. Numerical Anal., 28:5 (1991), 1350–1385 | DOI | MR | Zbl
[13] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 499 pp. | MR
[14] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR
[15] Danford N., Shvarts Dzh., Lineinye operatory, IL, M., 1962, 895 pp.