Asymptotic analysis of the diffusion-absorption equation with fast and strongly oscillating absorbtion coefficient in the two-dimensional case
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 305-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Helmholtz equation with fast oscillating absorbtion coefficient and constant reflection coefficient is considered. The equation models light absorption in a medium containing a periodic set of fine blood vessels. It is assumed that the absorption takes place only inside the vessels. It is also assumed that the reflection coefficient is constant whereas the absorbtion coefficient is small everywhere except for a set of periodic thin strips modeling blood vessels, where the absorption coefficient equals a large parameter $\omega$. There are two other parameters in the problem: $\varepsilon$ is the ratio of the distance between the vessel axes to a characteristic macroscopic size, and $\delta$ is the ratio of the width of the fine vessels to the period. Both parameters $\varepsilon$ and $\delta$ are assumed to be small. The main result is the construction of an asymptotic solution.
Keywords: asymptotics, Helmholtz equation, averaging.
@article{TIMM_2012_18_2_a28,
     author = {A. E. El'bert},
     title = {Asymptotic analysis of the diffusion-absorption equation with fast and strongly oscillating absorbtion coefficient in the two-dimensional case},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {305--311},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a28/}
}
TY  - JOUR
AU  - A. E. El'bert
TI  - Asymptotic analysis of the diffusion-absorption equation with fast and strongly oscillating absorbtion coefficient in the two-dimensional case
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 305
EP  - 311
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a28/
LA  - ru
ID  - TIMM_2012_18_2_a28
ER  - 
%0 Journal Article
%A A. E. El'bert
%T Asymptotic analysis of the diffusion-absorption equation with fast and strongly oscillating absorbtion coefficient in the two-dimensional case
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 305-311
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a28/
%G ru
%F TIMM_2012_18_2_a28
A. E. El'bert. Asymptotic analysis of the diffusion-absorption equation with fast and strongly oscillating absorbtion coefficient in the two-dimensional case. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 305-311. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a28/

[1] Mottin S., Panasenko G., Ganesh S. S., “Multiscale modeling of light absorption in tissues: limitations of classical homogenization approach”, PLoS ONE, 5:12 (2010), 1–9 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0014350 | DOI

[2] Elbert A., Panasenko G., “Asymptotic analysis of the one-dimensional diffusion-absorption equation with rapidly and strongly oscillating absorption coefficient”, SIAM J. Math. Anal., 44:3 (2012), 2099–2119 | DOI | Zbl