Conditioning of a~difference scheme of the solution decomposition method for a~singularly perturbed convection-diffusion equation
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 291-304
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditioning of a difference scheme of the solution decomposition method is studied for a Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation. In this scheme, we apply a decomposition of the discrete solution into the regular and singular components, which are solutions of discrete subproblems, i.e., classical difference approximations considered on uniform grids. The scheme converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-1}\ln N)$; $\varepsilon$ is a perturbation parameter multiplying the high-order derivative in the equation, $\varepsilon\in(0,1]$, and $N+1$ is the number of nodes in the grids used. It is shown that the solution decomposition scheme, unlike the standard scheme on uniform grid, is $\varepsilon$-uniformly well conditioned and stable to perturbations in the data of the discrete problem; the conditioning number of the scheme is a value of order $\mathcal O(\delta^{-2}\ln\delta^{-1})$, where $\delta$ is the accuracy of the discrete solution.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
singularly perturbed boundary value problem, difference scheme of the solution decomposition method, uniform grids, $\varepsilon$-uniform convergence, $\varepsilon$-uniform stability of the scheme, $\varepsilon$-uniform well conditioning of the scheme.
Mots-clés : convection-diffusion equation, maximum norm
                    
                  
                
                
                Mots-clés : convection-diffusion equation, maximum norm
@article{TIMM_2012_18_2_a27,
     author = {G. I. Shishkin},
     title = {Conditioning of a~difference scheme of the solution decomposition method for a~singularly perturbed convection-diffusion equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {291--304},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/}
}
                      
                      
                    TY - JOUR AU - G. I. Shishkin TI - Conditioning of a~difference scheme of the solution decomposition method for a~singularly perturbed convection-diffusion equation JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 291 EP - 304 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/ LA - ru ID - TIMM_2012_18_2_a27 ER -
%0 Journal Article %A G. I. Shishkin %T Conditioning of a~difference scheme of the solution decomposition method for a~singularly perturbed convection-diffusion equation %J Trudy Instituta matematiki i mehaniki %D 2012 %P 291-304 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/ %G ru %F TIMM_2012_18_2_a27
G. I. Shishkin. Conditioning of a~difference scheme of the solution decomposition method for a~singularly perturbed convection-diffusion equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 291-304. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/
