Conditioning of a difference scheme of the solution decomposition method for a singularly perturbed convection-diffusion equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 291-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Conditioning of a difference scheme of the solution decomposition method is studied for a Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation. In this scheme, we apply a decomposition of the discrete solution into the regular and singular components, which are solutions of discrete subproblems, i.e., classical difference approximations considered on uniform grids. The scheme converges $\varepsilon$-uniformly in the maximum norm at the rate $\mathcal O(N^{-1}\ln N)$; $\varepsilon$ is a perturbation parameter multiplying the high-order derivative in the equation, $\varepsilon\in(0,1]$, and $N+1$ is the number of nodes in the grids used. It is shown that the solution decomposition scheme, unlike the standard scheme on uniform grid, is $\varepsilon$-uniformly well conditioned and stable to perturbations in the data of the discrete problem; the conditioning number of the scheme is a value of order $\mathcal O(\delta^{-2}\ln\delta^{-1})$, where $\delta$ is the accuracy of the discrete solution.
Keywords: singularly perturbed boundary value problem, difference scheme of the solution decomposition method, uniform grids, $\varepsilon$-uniform convergence, $\varepsilon$-uniform stability of the scheme, $\varepsilon$-uniform well conditioning of the scheme.
Mots-clés : convection-diffusion equation, maximum norm
@article{TIMM_2012_18_2_a27,
     author = {G. I. Shishkin},
     title = {Conditioning of a~difference scheme of the solution decomposition method for a~singularly perturbed convection-diffusion equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {291--304},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Conditioning of a difference scheme of the solution decomposition method for a singularly perturbed convection-diffusion equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 291
EP  - 304
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/
LA  - ru
ID  - TIMM_2012_18_2_a27
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Conditioning of a difference scheme of the solution decomposition method for a singularly perturbed convection-diffusion equation
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 291-304
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/
%G ru
%F TIMM_2012_18_2_a27
G. I. Shishkin. Conditioning of a difference scheme of the solution decomposition method for a singularly perturbed convection-diffusion equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 291-304. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a27/

[1] Bakhvalov N. C., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992, 233 pp.

[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Singapore, 1996, 166 pp. | MR

[4] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman HAll/CRC, Boca Raton, 2000, 254 pp. | MR | Zbl

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer series in computational mathematics, 24, Springer-Verlag, Berlin, 2008, 604 pp. | MR | Zbl

[6] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC monographs and surveys in pure and applied mathematics, 140, CRC Press, Boca Raton, 2009, 408 pp. | MR | Zbl

[7] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl

[8] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 608 pp. | MR | Zbl

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[10] Shishkin G. I., Shishkina L. P., “Uluchshennaya raznostnaya skhema metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo (obyknovennogo differentsialnogo) uravneniya reaktsii-diffuzii”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 255–271

[11] Shishkin G. I., “Difference scheme of the solution decomposition method for a singularly perturbed parabolic reaction-diffusion equation”, Russian J. Numer. Anal. Math. Modelling, 25:3 (2010), 261–278 | DOI | MR | Zbl

[12] Shishkin G. I., Shishkina L. P., “Skhema Richardsona metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii”, Zhurn. vychisl. matematiki i mat. fiziki, 50:12 (2010), 2113–2133 | MR | Zbl

[13] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh uravnenii s konvektivnymi chlenami pri vozmuschenii dannykh”, Zhurn. vychisl. matematiki i mat. fiziki, 41:5 (2001), 692–707 | MR | Zbl

[14] Shishkin G. I., “Obuslennost raznostnykh skhem dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii”, Zhurn. vychisl. matematiki i mat. fiziki, 48:5 (2008), 813–830 | MR | Zbl

[15] Bakhvalov N. C., Chislennye metody, Nauka, M., 1973, 632 pp. | MR | Zbl

[16] Bakhvalov N. C., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001, 632 pp.