Solution of nonlinear partial differential equations by the geometric method
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 265-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The earlier proposed geometric method of investigation of nonlinear partial differential equations is developed. The heat equation describing blow-up regimes and the equation for the flow function in a boundary layer are studied. We propose a modification of the method based on the specific character of the equations and show its applicability in the case under consideration. Classes of particular exact solutions are found and a boundary value problem is solved.
Keywords: nonlinear partial differential equations, heat equation, equation for the flow function in a boundary layer
Mots-clés : exact solutions.
@article{TIMM_2012_18_2_a25,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {Solution of nonlinear partial differential equations by the geometric method},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {265--280},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a25/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - Solution of nonlinear partial differential equations by the geometric method
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 265
EP  - 280
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a25/
LA  - ru
ID  - TIMM_2012_18_2_a25
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T Solution of nonlinear partial differential equations by the geometric method
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 265-280
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a25/
%G ru
%F TIMM_2012_18_2_a25
L. I. Rubina; O. N. Ul'yanov. Solution of nonlinear partial differential equations by the geometric method. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 265-280. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a25/

[1] Rubina L. I., Ulyanov O. N., “Odin geometricheskii metod resheniya nelineinykh uravnenii v chastnykh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 209–225

[2] Kurkina E. S., Nikolskii I. M., “O rezhimakh s obostreniem v uravneniyakh $u_t=\operatorname{div}(u^\sigma\operatorname{grad}u)+u^\beta$”, Differents. uravneniya. Funktsionalnye prostranstva. Teoriya priblizhenii, Tez. dokl. Mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya Sergeya Lvovicha Soboleva, Novosibirsk, 2008, 512

[3] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Gos. izd-vo tekh.-teoret. lit., M., 1957, 784 pp. | MR

[4] Smirnov V. I., Kurs vysshei matematiki, v. 4, Gos. izd-vo tekh.-teoret. lit., M., 1951, 810 pp. | MR

[5] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966, 260 pp. | Zbl

[6] Kurant P., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR

[7] Rubina L. I., Ulyanov O. N., “O reshenii uravneniya potentsiala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 1, 2008, 130–145

[8] Ludwig D., “Conical refraction in cristal optics and hidromagnetics”, Comm. Pure Appl. Math., 14:2 (1961), 113–124 | DOI | MR | Zbl

[9] Rubina L. I., “O rasprostranenii slabykh razryvov dlya kvazilineinykh sistem”, Prikl. matematika i mekhanika, 36:3 (1972), 435–443 | MR | Zbl

[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1962, 1100 pp. | MR

[11] Lomkatsi Ts. D., Tablitsy ellipticheskoi funktsii Veiershtrassa. Teoreticheskaya chast, eds. V. M. Belyakov, K. A. Karpov, VTs AN SSSR, M., 1967, 88 pp. | MR