Stability of autoresonance models under persistent disturbances
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 254-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to investigating the stability of growing solutions of nonlinear systems related to the autoresonance phenomenon. The aim of the paper is to find conditions under which solutions are stable under persistent disturbances. The main tool here is the Lyapunov function. The results obtained for the main resonance equations are extended to general nonautonomous systems close to Hamiltonian systems.
Keywords: stability, Lyapunov function, nonlinear systems, autoresonance.
Mots-clés : perturbations
@article{TIMM_2012_18_2_a24,
     author = {O. A. Sultanov},
     title = {Stability of autoresonance models under persistent disturbances},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {254--264},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a24/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stability of autoresonance models under persistent disturbances
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 254
EP  - 264
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a24/
LA  - ru
ID  - TIMM_2012_18_2_a24
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stability of autoresonance models under persistent disturbances
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 254-264
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a24/
%G ru
%F TIMM_2012_18_2_a24
O. A. Sultanov. Stability of autoresonance models under persistent disturbances. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 254-264. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a24/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 408 pp. | MR

[2] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi mat. nauk, 63:5 (2008), 3–72 | MR | Zbl

[3] Malkin I. G., Teoriya ustoichivosti dvizheniya, GITTL, M.–L., 1952, 432 pp. | MR

[4] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego prilozheniya, 23:4 (1989), 63–74 | MR | Zbl

[5] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo Mosk. un-ta, M., 1996, 244 pp. | MR | Zbl

[6] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial, M., 2004, 552 pp.

[7] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 368 pp. | MR

[8] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[9] Malkin I. G., “K voprosu ob obraschenii teoremy Lyapunova ob asimptoticheskoi ustoichivosti”, Prikl. matematika i mekhanika, 18:2 (1954), 129–138 | MR | Zbl

[10] Sultanov O. A., “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufim. mat. zhurn., 2:4 (2010), 88–98

[11] Kalyakin L. A., “Asimptoticheskoe reshenie zadachi o porogovom effekte dlya uravnenii glavnogo rezonansa”, Differents. uravneniya, 40:6 (2004), 731–739 | MR | Zbl