Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 245-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A complete asymptotic expansion as $x\to\pm\infty$ of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation $u_t+u_{xxx}+uu_x=0$ is constructed and validated. The expansion is infinitely differentiable in the variables $t$ and $x$ and, together with the asymptotic expansions of all its derivatives in independent variables, is uniform on any compact interval of variation of the time $t$.
Keywords: Korteweg–de Vries equation, nonlinear Schrödinger equation, asymptotic expansion.
Mots-clés : isomonodromy
@article{TIMM_2012_18_2_a23,
     author = {B. I. Suleimanov},
     title = {Asymptotics of the {Gurevich{\textendash}Pitaevskii} universal special solution of the {Korteweg{\textendash}de} {Vries} equation as~$|x|\to\infty$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {245--253},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a23/}
}
TY  - JOUR
AU  - B. I. Suleimanov
TI  - Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 245
EP  - 253
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a23/
LA  - ru
ID  - TIMM_2012_18_2_a23
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%T Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 245-253
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a23/
%G ru
%F TIMM_2012_18_2_a23
B. I. Suleimanov. Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 245-253. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a23/

[1] Ilin A. M., Coglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[2] Ligthill M. J., “Viscosity effects in sound waves of finite amplitude”, Surveys in Mechanics, Cambridge Univ. Press, Cambridge, 1956, 250–351 | MR

[3] Kudashev V., Suleimanov B., “A soft mechanism for generation the dissipationless shock waves”, Phys. Lett. A, 221:3–4 (1996), 204–208 | DOI

[4] Kudashev V. R., Suleimanov B. I., “Myagkii rezhim formirovaniya bezdissipativnykh udarnykh voln”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya, v. III, Differentsialnye uravneniya, Ufimskii nauchnyi tsentr RAN, In-t matematiki s VTs, Ufa, 1996, 98–108 URL: http://matem.anrb.ru/e_lib/preprints/BS/bs22.html

[5] Kudashev V. R., Culeimanov B. I., “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. matematika i mekhanika, 65:3 (2001), 456–466 | MR | Zbl

[6] Gurevich A. V., Pitaevskii L. P., “Oprokidyvanie prostoi volny v kineteke razrezhennoi plazmy”, Zhurn. eksperiment. i teoret. fiziki, 60:6 (1971), 2155–2174 | MR

[7] Dubrovin B., “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour”, Commun. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl

[8] Dubrovin B., “On universality of critical behaviour in hamiltonian PDEs”, Amer. Math. Soc. Transl. Ser 2, 224 (2008), 59–109 | MR | Zbl

[9] Garifullin R., Suleimanov B., Tarkhanov N., “Phase shift in the Whitham zone for the Gurevich–Pitaevskii special solution of the Korteweg–de Vries equation”, Phys. Lett. A, 374:13–14 (2010), 1420–1424 | DOI | MR | Zbl

[10] Suleimanov B. I., “O reshenii uravneniya Kortevega–de Vriza, voznikayuschego vblizi tochki oprokidyvaniya v zadachakh s maloi dispersiei”, Pisma v zhurn. eksperiment. i teoret. fiziki, 58:2 (1993), 906–910 | MR | Zbl

[11] Suleimanov B. I., “Vozniknovenie bezdissipativnykh udarnykh voln i “neperturbativnaya” kvantovaya teoriya gravitatsii”, Zhurn. eksperiment. i teoret. fiziki, 105:5 (1994), 1089–1099 | MR

[12] Bresin E., Marinari E., Parisi G., “A nonperturbative ambigity free solution of a string model”, Phys. Lett. B, 242:1 (1990), 35–38 | DOI | MR

[13] Douglas M., Seiberg N., Shenker S., “Flow and unstability in quantum gravity”, Phys. Lett. A, 244:3–4 (1990), 381–385 | MR

[14] Gurevich A. V., Pitaevskii L. P., “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, Zhurn. eksperiment. i teoret. fiziki, 65:2 (1973), 590–604 | MR

[15] Potemin G. V., “Algebro-geometricheskoe postroenie reshenii uravnenii Uizema”, Uspekhi mat. nauk, 43:5(263) (1988), 211–212 | MR

[16] Claeys T., “Asymptotics for a special solutions to the second member of the Painlevé I hierarhy”, J. Phys. A, 43:43 (2010), 434012, 18 pp. | DOI | MR | Zbl

[17] Claeys T., Vanlessen M., “The existence of a reale pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity, 20:5 (2007), 1163–1184 | DOI | MR | Zbl

[18] Culeimanov B. I., “Ctepennye asimptotiki reshenii uravnenii tipa Penleve”, Uspekhi mat. nauk, 50:4 (1995), 76–77

[19] Kuznetsov A. N., “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh differentsialnykh uravnenii”, Funkts. analiz i ego prilozheniya, 6:2 (1972), 41–51 | MR | Zbl

[20] Bondareva I. N., “Uravnenie Kortevega–de Friza v klassakh rastuschikh funktsii s zadannoi asimptotikoi pri $|x|\to\infty$”, Mat. sb., 122(164):2 (1983), 131–141 | MR | Zbl

[21] Shimomura S., “A certain expansion of the first Painlevé hierarchy”, Proc. Jap. Acad. A, 80:6 (2004), 105–109 | DOI | MR | Zbl

[22] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980, 320 pp. | MR

[23] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968, 464 pp.

[24] Flashka H., Newell A., “Monodromy- and spectrum-presrving deformations. I”, Comm. Math. Phys., 76:1 (1980), 65–116 | DOI | MR

[25] Bondareva I. N., Shubin M. A., “Uravneniya tipa Kortevega–de Friza v klassakh rastuschikh funktsii”, Tr. seminara im. I. G. Petrovskogo, 14, 1989, 44–56

[26] Bondareva I. N., Shubin M. A., “Rastuschie asimptoticheskie resheniya uravneniya Kortevega–de Friza i ego vysshikh analogov”, Dokl. AN SSSR, 267:5 (1982), 1035–1038 | MR | Zbl

[27] Bondareva I. N., Shubin M. A., “Ob edinstvennosti resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza v klassakh rastuschikh funktsii”, Vest. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1985, no. 3, 35–38 | MR | Zbl

[28] Claeys T., Pole-free solutions of the first Painlevé hierarchy and non-generic critical behavior for the KdV equation, 2011, 29 pp., arXiv: 1107.0214[math-ph]

[29] Suleimanov B. I., “O vliyanii maloi nelineinosti na vysokochastotnye asimptotiki pri perestroikakh kaustik”, Teoret. mat. fizika, 98:2 (1994), 197–206 | MR | Zbl

[30] Haberman R., Sun Ren Ji, “Nonlinear cusped caustics for dispersive waves”, Stud. Appl. Math., 72:1 (1985), 1–37 | MR | Zbl

[31] Culeimanov B. I., “Vtoroe uravnenie Penleve v odnoi zadache o nelineinykh effektakh vblizi kaustiki”, Zapiski nauch. seminarov LOMI, 187, 1991, 110–128 | MR | Zbl

[32] Culeimanov B. I., “Izomonodromnoe yavlenie Stoksa i nelineinye effekty vblizi kaustiki”, Dokl. AN SSSR, 323:1 (1992), 40–44

[33] Kitaev A. V., “Caustics in $1+1$ integrable systems”, J. Math. Physics, 35:6 (1994), 2934–2954 | DOI | MR | Zbl

[34] Kitaev A. V., “Tochki povorota lineinykh sistem i dvoinye asimptotiki transtsendentov Penleve”, Zapiski nauch. seminarov LOMI, 187, 1991, 53–74 | MR | Zbl