On successive approximations of solutions of a~singular Cauchy problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 238-244

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of the Cauchy problem for a differential equation with a Fredholm operator in the main part are constructed by successive approximations, which converge uniformly in a neighborhood of algebraic branch points. The leading term of the asymptotics is constructed with the help of the analytical theory of branching solutions of operator equations. It is employed as the initial approximation.
Keywords: Cauchy problem, Fredholm operator, branching of solutions, asymptotics, successive approximations.
@article{TIMM_2012_18_2_a22,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {On successive approximations of solutions of a~singular {Cauchy} problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--244},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - On successive approximations of solutions of a~singular Cauchy problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 238
EP  - 244
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/
LA  - ru
ID  - TIMM_2012_18_2_a22
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T On successive approximations of solutions of a~singular Cauchy problem
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 238-244
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/
%G ru
%F TIMM_2012_18_2_a22
N. A. Sidorov; D. N. Sidorov. On successive approximations of solutions of a~singular Cauchy problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 238-244. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/