On successive approximations of solutions of a singular Cauchy problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 238-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Solutions of the Cauchy problem for a differential equation with a Fredholm operator in the main part are constructed by successive approximations, which converge uniformly in a neighborhood of algebraic branch points. The leading term of the asymptotics is constructed with the help of the analytical theory of branching solutions of operator equations. It is employed as the initial approximation.
Keywords: Cauchy problem, Fredholm operator, branching of solutions, asymptotics, successive approximations.
@article{TIMM_2012_18_2_a22,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {On successive approximations of solutions of a~singular {Cauchy} problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--244},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - On successive approximations of solutions of a singular Cauchy problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 238
EP  - 244
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/
LA  - ru
ID  - TIMM_2012_18_2_a22
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T On successive approximations of solutions of a singular Cauchy problem
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 238-244
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/
%G ru
%F TIMM_2012_18_2_a22
N. A. Sidorov; D. N. Sidorov. On successive approximations of solutions of a singular Cauchy problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 238-244. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a22/

[1] Akhmedov K. T., “Analiticheskii metod Nekrasova–Nazarova v nelineinom analize”, Uspekhi mat. nauk, 12:4 (1957), 135–153 | MR | Zbl

[2] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[3] Demidenko V. G., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 436 pp. | MR | Zbl

[4] Ivanov V. K., Izbrannye nauchnye trudy. Matematika, Fizmatlit, M., 2008, 552 pp. | MR

[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp. | Zbl

[6] Trenogin V. A., Filippov A. F. (red.), Nelineinyi analiz i nelineinye differentsialnye uravneniya, Fizmatlit, M., 2003, 464 pp. | MR

[7] Sidorov N. A., “O vetvlenii reshenii zadachi Koshi dlya odnogo klassa nelineinykh integro-differentsialnykh uravnenii”, Differents. uravneniya, 3:9 (1967), 1592–1601 | MR | Zbl

[8] Sidorov N. A., Leontev R. Yu., “O resheniyakh maksimalnogo poryadka malosti nelineinykh uravnenii s vektornym parametrom v sektorialnykh okrestnostyakh”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 226–237

[9] Sidorov N. A., Sidorov D. N., “O resheniyakh integralnogo uravneniya Gammershteina v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Sib. mat. zhurn., 51:2 (2010), 404–409 | MR | Zbl

[10] Sidorov N. A., Sidorov D. N., “O malykh resheniyakh differentsialnykh uravnenii v okrestnostyakh tochek vetvleniya”, Izv. vuzov. Matematika, 2011, no. 5, 53–61 | MR | Zbl

[11] Sidorov N. A., Sidorov D. N., Krasnik A. V., “O reshenii operatorno-integralnykh uravnenii Volterry v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Differents. uravneniya, 46:6 (2010), 874–882 | MR | Zbl

[12] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 2007, 488 pp. | MR

[13] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 568 pp. | MR | Zbl

[14] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Tokyo–Keln, 2003, 216 pp. | MR | Zbl