On factorizations of subformations of one-generated hereditary $\omega$-saturated formations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 232-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The product $\mathfrak{MH}$ of formations $\mathfrak M$ and $\mathfrak H$ is the class of groups $(G\mid G^\mathfrak H\in\mathfrak M)$. Let $\mathfrak{MH}\subseteq\mathfrak F$, where $\mathfrak F=s^\omega\mathrm{form}G$ is a one-generated hereditary $\omega$-saturated formation. We prove that $\mathfrak M$ is a soluble formation if formations $\mathfrak M$ and $\mathfrak H$ are such that $\mathfrak H\ne\mathfrak{MH}$.
Keywords: one-generated hereditary $\omega$-saturated formation
Mots-clés : product of formations, $V$-satellite.
@article{TIMM_2012_18_2_a21,
     author = {V. M. Sel'kin},
     title = {On factorizations of subformations of one-generated hereditary $\omega$-saturated formations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {232--237},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a21/}
}
TY  - JOUR
AU  - V. M. Sel'kin
TI  - On factorizations of subformations of one-generated hereditary $\omega$-saturated formations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 232
EP  - 237
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a21/
LA  - ru
ID  - TIMM_2012_18_2_a21
ER  - 
%0 Journal Article
%A V. M. Sel'kin
%T On factorizations of subformations of one-generated hereditary $\omega$-saturated formations
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 232-237
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a21/
%G ru
%F TIMM_2012_18_2_a21
V. M. Sel'kin. On factorizations of subformations of one-generated hereditary $\omega$-saturated formations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 232-237. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a21/

[1] Shemetkov L. A., Skiba A. N., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Mat. trudy, 2:2 (1999), 114–147 | MR | Zbl

[2] Shemetkov L. A., “O proizvedenii formatsii”, Dokl. AN BSSR, 28:2 (1984), 101–103 | MR | Zbl

[3] Vedernikov V. A., “Lokalnye formatsii konechnykh grupp”, Mat. zametki, 46:6 (1989), 32–37 | MR | Zbl

[4] Vorobev N. T., “Faktorizatsii nelokalnykh formatsii konechnykh grupp”, Voprosy algebry, 2, Izd-vo Gomelskogo un-ta, Gomel, 1990, 21–24

[5] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp. | MR | Zbl

[6] Skiba A. N., “On non-trivial factorizations of a one-generated local formations of finite groups”, Proceed. Intern. Conf. Algebra, Part 1 (Novosibirsk, 1989), Amer. Math. Soc., Providence, RI, 1992, 363–374 | MR

[7] Skiba A. N., “O faktorizatsiyakh kompozitsionnykh formatsii”, Mat. zametki, 65:3 (1999), 389–395 | DOI | MR | Zbl

[8] Guo W., “On a question from Kourovka Notebook”, Comm. Algebra, 28:10 (2000), 4767–4782 | DOI | MR | Zbl

[9] Skiba A. N., Ryzhik V. N., “O faktrorizatsiyakh odnoporozhdennykh $p$-lokalnykh formatsii”, Voprosy algebry, 11, Izd-vo Gomelskogo un-ta, Gomel, 1997, 104–116 | MR

[10] Vishnevskaya T. R., “On factorizations of one-generated $p$-local formations”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 2000, no. 3(16), Voprosy algebry, 88–92 | Zbl

[11] Selkin V. M., “Ob odnom svoistve needinichnykh formatsii”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 101–104

[12] Guo W., Shum K. P., Selkin V. M., “Factorizations theory of 1-Generated $\omega$-Composition Formations”, Communications in Algebra, 35:9 (2007), 2901–2931 | DOI | MR | Zbl

[13] Doerk K., Hawkes T., Finite soluble group, Walter de Gruyter, Berlin–New York, 1992, 889 pp. | MR

[14] Guo W., Shum K. P., “Uncancellative factorizations of Bear-local formations”, J. Algebra, 267:2 (2003), 654–672 | DOI | MR | Zbl