Numerical methods for solving a hereditary equation of hyperbolic type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 222-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A family of grid methods is constructed for the numerical solution of a wave equation with time delay of general form; the methods are based on the idea of separating the current state and the prehistory function. A theorem on the order of convergence of the methods is obtained by means of embedding into a general difference scheme with aftereffect. Results of calculating test examples with constant and variable time delay are presented.
Keywords: numerical methods, wave equation, time delay, difference schemes, order of convergence.
Mots-clés : interpolation, extrapolation
@article{TIMM_2012_18_2_a20,
     author = {V. G. Pimenov and E. E. Tashirova},
     title = {Numerical methods for solving a~hereditary equation of hyperbolic type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--231},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a20/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - E. E. Tashirova
TI  - Numerical methods for solving a hereditary equation of hyperbolic type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 222
EP  - 231
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a20/
LA  - ru
ID  - TIMM_2012_18_2_a20
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A E. E. Tashirova
%T Numerical methods for solving a hereditary equation of hyperbolic type
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 222-231
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a20/
%G ru
%F TIMM_2012_18_2_a20
V. G. Pimenov; E. E. Tashirova. Numerical methods for solving a hereditary equation of hyperbolic type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 222-231. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a20/

[1] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 428 pp. | MR

[2] Kim A. V., Pimenov V. G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2004, 256 pp.

[3] Pimenov V. G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl

[4] Pimenov V. G., Lozhnikov A. B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 178–189

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR

[6] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp. | MR