@article{TIMM_2012_18_2_a2,
author = {D. I. Borisov},
title = {On a~$\mathcal{PT}$-symmetric waveguide with a~pair of small holes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {22--37},
year = {2012},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a2/}
}
D. I. Borisov. On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 22-37. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a2/
[1] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | DOI | MR | Zbl
[2] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, Teoret. mat. fizika, 132:1 (2002), 97–104 | DOI | MR | Zbl
[3] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963, 339 pp. | MR
[4] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 335 pp. | MR
[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl
[6] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. mat., 48:2 (1984), 347–371 | MR | Zbl
[7] Nazarov S. A., “Variatsionnyi i asimptoticheskii metod poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sib. mat. zhurn., 51:5 (2010), 1086–1101 | MR | Zbl
[8] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR
[9] Bender C. M., Boettcher S., “Real spectra in non-hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[10] Bender C. M., “Making sense of non-Hermitian Hamiltionians”, Rep. Prog. Phys., 70:6 (2007), 947–1018 | DOI | MR
[11] Borisov D., Exner P., Gadylshin R., “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278 | DOI | MR | Zbl
[12] Borisov D., Krejcirik D., “$\mathcal{PT}$-symmetric waveguide”, Int. Eqs. Op. Th., 62:4 (2008), 489–515 | DOI | MR | Zbl
[13] Borisov D., Krecirik D., “The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions”, Asympt. Anal., 76:1 (2012), 49–59 | MR | Zbl
[14] Caliceti E., Cannata F., Graffi S., “Perturbation theory of $\mathcal{PT}$-symmetric Hamiltonians”, J. Phys. A, 39:32 (2006), 10019–10027 | DOI | MR | Zbl
[15] Caliceti E., Graffi S., Sjstrand J., “Spectra of $\mathcal{PT}$-symmetric operators and perturbation theory”, J. Phys. A, 38:1 (2005), 185–193 | DOI | MR | Zbl
[16] Caliceti E., Cannata F., Graffi S., “$\mathcal{PT}$-symmetric Schrödinger operators: reality of the perturbed eigenvalues”, Symmetry Integrability Geom. Methods Appl., 6 (2010), Paper 009, 8 pp. | DOI | MR | Zbl
[17] Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A, 34:28 (2001), 5679–5704 | DOI | MR | Zbl
[18] Gadylshin R. R., “On regular and singular perturbations of acoustic and quantum waveguides”, C. R. Mecanique, 332:8 (2004), 647–652 | DOI
[19] Krejcirik D., Bila H., Znojil M., “Closed formula for the metric in the Hilbert space of a $\mathcal{PT}$-symmetric model”, J. Phys. A, 39:32 (2006), 10143–10153 | DOI | MR | Zbl
[20] Krejcirik D., Tater M., “Non-Hermitian spectral effects in a $\mathcal{PT}$-symmetric waveguide”, J. Phys. A, 41:24 (2008), Id 244013, 14 pp. | MR | Zbl
[21] Langer H., Tretter Ch., “A Krein space approach to $\mathcal{PT}$-symmetry”, Czech. J. Phys., 54:10 (2004), 1113–1120 | DOI | MR | Zbl
[22] Majda A., “Outgoing solutions for perturbation of $-\Delta$ with applications to spectral and scattering theory”, J. Diff. Eqs., 16:3 (1974), 515–547 | DOI | MR | Zbl
[23] Mazya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed problems, v. 1, Birkhäuser Verlag, Basel–Boston–Berlin, 2000, 435 pp. | MR
[24] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math. II Serie, 115:1 (1991), 1–27 | MR | Zbl
[25] Shin K. C., “On the reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators”, Commun. Math. Phys., 229:3 (2002), 543–564 | DOI | MR | Zbl
[26] Znojil M., “$\mathcal{PT}$-symmetric square well”, Phys. Lett. A, 285:1–2 (2001), 7–10 | DOI | MR | Zbl