On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 22-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A planar $\mathcal{PT}$-symmetric waveguide with a pair of small holes is considered. The waveguide is modeled by a planar infinite strip in which a pair of symmetric small holes is cut out. The operator is the Laplacian with $\mathcal{PT}$-symmetric boundary condition at the edges of the strip and Neumann condition at the boundaries of the holes. For this operator, the uniform resolvent convergence is established and the convergence rate is estimated. The effect of the generation by the holes of new eigenvalues from the boundary of the continuous spectrum is studied. Sufficient conditions for the existence and absence of such eigenvalues are obtained and the first terms of their asymptotic expansions are found.
Keywords: $\mathcal{PT}$-symmetric waveguide, small hole, uniform resolvent convergence, asymptotics.
@article{TIMM_2012_18_2_a2,
     author = {D. I. Borisov},
     title = {On a~$\mathcal{PT}$-symmetric waveguide with a~pair of small holes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {22--37},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a2/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 22
EP  - 37
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a2/
LA  - ru
ID  - TIMM_2012_18_2_a2
ER  - 
%0 Journal Article
%A D. I. Borisov
%T On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 22-37
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a2/
%G ru
%F TIMM_2012_18_2_a2
D. I. Borisov. On a $\mathcal{PT}$-symmetric waveguide with a pair of small holes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 22-37. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a2/

[1] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | DOI | MR | Zbl

[2] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, Teoret. mat. fizika, 132:1 (2002), 97–104 | DOI | MR | Zbl

[3] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963, 339 pp. | MR

[4] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 335 pp. | MR

[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[6] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. mat., 48:2 (1984), 347–371 | MR | Zbl

[7] Nazarov S. A., “Variatsionnyi i asimptoticheskii metod poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sib. mat. zhurn., 51:5 (2010), 1086–1101 | MR | Zbl

[8] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR

[9] Bender C. M., Boettcher S., “Real spectra in non-hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl

[10] Bender C. M., “Making sense of non-Hermitian Hamiltionians”, Rep. Prog. Phys., 70:6 (2007), 947–1018 | DOI | MR

[11] Borisov D., Exner P., Gadylshin R., “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278 | DOI | MR | Zbl

[12] Borisov D., Krejcirik D., “$\mathcal{PT}$-symmetric waveguide”, Int. Eqs. Op. Th., 62:4 (2008), 489–515 | DOI | MR | Zbl

[13] Borisov D., Krecirik D., “The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions”, Asympt. Anal., 76:1 (2012), 49–59 | MR | Zbl

[14] Caliceti E., Cannata F., Graffi S., “Perturbation theory of $\mathcal{PT}$-symmetric Hamiltonians”, J. Phys. A, 39:32 (2006), 10019–10027 | DOI | MR | Zbl

[15] Caliceti E., Graffi S., Sjstrand J., “Spectra of $\mathcal{PT}$-symmetric operators and perturbation theory”, J. Phys. A, 38:1 (2005), 185–193 | DOI | MR | Zbl

[16] Caliceti E., Cannata F., Graffi S., “$\mathcal{PT}$-symmetric Schrödinger operators: reality of the perturbed eigenvalues”, Symmetry Integrability Geom. Methods Appl., 6 (2010), Paper 009, 8 pp. | DOI | MR | Zbl

[17] Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A, 34:28 (2001), 5679–5704 | DOI | MR | Zbl

[18] Gadylshin R. R., “On regular and singular perturbations of acoustic and quantum waveguides”, C. R. Mecanique, 332:8 (2004), 647–652 | DOI

[19] Krejcirik D., Bila H., Znojil M., “Closed formula for the metric in the Hilbert space of a $\mathcal{PT}$-symmetric model”, J. Phys. A, 39:32 (2006), 10143–10153 | DOI | MR | Zbl

[20] Krejcirik D., Tater M., “Non-Hermitian spectral effects in a $\mathcal{PT}$-symmetric waveguide”, J. Phys. A, 41:24 (2008), Id 244013, 14 pp. | MR | Zbl

[21] Langer H., Tretter Ch., “A Krein space approach to $\mathcal{PT}$-symmetry”, Czech. J. Phys., 54:10 (2004), 1113–1120 | DOI | MR | Zbl

[22] Majda A., “Outgoing solutions for perturbation of $-\Delta$ with applications to spectral and scattering theory”, J. Diff. Eqs., 16:3 (1974), 515–547 | DOI | MR | Zbl

[23] Mazya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed problems, v. 1, Birkhäuser Verlag, Basel–Boston–Berlin, 2000, 435 pp. | MR

[24] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math. II Serie, 115:1 (1991), 1–27 | MR | Zbl

[25] Shin K. C., “On the reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators”, Commun. Math. Phys., 229:3 (2002), 543–564 | DOI | MR | Zbl

[26] Znojil M., “$\mathcal{PT}$-symmetric square well”, Phys. Lett. A, 285:1–2 (2001), 7–10 | DOI | MR | Zbl