Mots-clés : diffusion equation
@article{TIMM_2012_18_2_a18,
author = {G. P. Panasenko},
title = {Partial asymptotic decomposition of the domain for the diffusion{\textendash}discrete absorption},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {205--211},
year = {2012},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/}
}
TY - JOUR AU - G. P. Panasenko TI - Partial asymptotic decomposition of the domain for the diffusion–discrete absorption JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 205 EP - 211 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/ LA - ru ID - TIMM_2012_18_2_a18 ER -
G. P. Panasenko. Partial asymptotic decomposition of the domain for the diffusion–discrete absorption. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 205-211. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/
[1] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 221:3 (1975), 516–519 | MR | Zbl
[2] Born M., Khuan Kun, Dinamicheskaya teoriya kristallicheskikh reshetok, IL, M., 1958, 488 pp.
[3] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshikh proizvodnykh”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl
[4] Kozlov S. M., “Usrednenie raznostnykh skhem”, Mat. cb., 129(171):3 (1986), 338–357 | MR | Zbl
[5] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo Leningrad. un-ta, L., 1984
[6] Shenoy V. B., Miller R., Tadmor E. B., Rodney D., Phillips R., Ortiz M., “An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method”, J. Mech. Phys. Solids, 47:3 (1999), 611–642 | DOI | MR | Zbl
[7] Bessonov N., Volpert V., Dynamic models of plant growth. Mathematics and Mathematical Modelling, Publibook, Paris, 2006, 68 pp. | MR | Zbl
[8] Betoue Etoughe M., Panasenko G., “Partial homogenization of discrete models”, Appl. Anal., 87:12 (2008), 1425–1442 | DOI | MR | Zbl
[9] Blanc X., Le Bris C., Lions P.-L., “From molecular models to continuum mechanics”, Arch. Ration. Mech. Anal., 164:4 (2002), 341–381 | DOI | MR | Zbl
[10] Blanc X., Le Bris C., Legoll F., “Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics”, Math. Model. Numer. Anal., 39:4 (2005), 797–826 | DOI | MR | Zbl
[11] Caillerie D., Muorad A., Raoult A., “Discrete homogenization in graphene sheet modeling”, J. Elasticity, 84:1 (2006), 33–68 | DOI | MR | Zbl
[12] Kunin I. A., Elastic media with microstructure, v. I, Springer Ser. in Solid-State Sciences, 26, One-dimensional models, Springer-Verlag, Berlin–New York, 1982, 291 pp. ; Elastic media with microstructure, v. II, Springer Ser. in Solid-State Sciences, 44, Three-dimensional models, Springer-Verlag, Berlin–New York, 1983, 272 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[13] Kurbatova P., Panasenko G., Volpert V., “Asymptotic numerical analysis of the diffusion-discrete absorption equation”, Math. Meth. Appl. Sci., 35 (2012), 438–444 | DOI | MR | Zbl
[14] Orive R., Zuazua E., “Finite difference approximation of homogenization problems for elliptic equations”, Multiscale Model. Simul., 4:1 (2005), 36–87, (electronic) | DOI | MR | Zbl
[15] Panasenko G., Multi-scale modeling for structures and composites, Springer, Dordrecht, 2005, 398 pp. | MR | Zbl
[16] Panasenko G., “The partial homogenization: continuous and semi-discretized versions”, Math. Models Methods Appl. Sci., 17:8 (2007), 1183–1209 | DOI | MR | Zbl
[17] Piatnitski A., Remy E., “Homogenization of elliptic difference operators”, SIAM J. Math. Anal., 33:1 (2001), 53–83 | DOI | MR | Zbl