Partial asymptotic decomposition of the domain for the diffusion–discrete absorption
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 205-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the diffusion–discrete absorption equation, which is an approximate model of the diffusion of a substance in a solution containing a chain of cells absorbing the substance; the size of the cells is much smaller than the distance $h$ between them, and this distance is small compared to the length of the chain. The diffusion–discrete absorption equation contains the standard diffusion term and a discrete point absorption, which is described by the sum of a large number of Dirac delta functions with supports on nonuniform grid multiplied by an unknown function (concentration). We study the possibility of a partial asymptotic decomposition of the domain for the diffusion–discrete absorption equation: it is required to preserve the discrete description of the absorption on a part of the domain and pass to a continuous description on the greater part of the domain. This combination of the macroscopic and microscopic descriptions in one model is characteristic of multiscale modeling. We obtain an error estimate for the partially continuous model with respect to the original model with completely discrete absorption.
Keywords: partial asymptotic decomposition, discrete-continuum models, error estimate.
Mots-clés : diffusion equation
@article{TIMM_2012_18_2_a18,
     author = {G. P. Panasenko},
     title = {Partial asymptotic decomposition of the domain for the diffusion{\textendash}discrete absorption},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {205--211},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/}
}
TY  - JOUR
AU  - G. P. Panasenko
TI  - Partial asymptotic decomposition of the domain for the diffusion–discrete absorption
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 205
EP  - 211
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/
LA  - ru
ID  - TIMM_2012_18_2_a18
ER  - 
%0 Journal Article
%A G. P. Panasenko
%T Partial asymptotic decomposition of the domain for the diffusion–discrete absorption
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 205-211
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/
%G ru
%F TIMM_2012_18_2_a18
G. P. Panasenko. Partial asymptotic decomposition of the domain for the diffusion–discrete absorption. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 205-211. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a18/

[1] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 221:3 (1975), 516–519 | MR | Zbl

[2] Born M., Khuan Kun, Dinamicheskaya teoriya kristallicheskikh reshetok, IL, M., 1958, 488 pp.

[3] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshikh proizvodnykh”, Mat. zametki, 6:2 (1969), 237–248 | MR | Zbl

[4] Kozlov S. M., “Usrednenie raznostnykh skhem”, Mat. cb., 129(171):3 (1986), 338–357 | MR | Zbl

[5] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo Leningrad. un-ta, L., 1984

[6] Shenoy V. B., Miller R., Tadmor E. B., Rodney D., Phillips R., Ortiz M., “An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method”, J. Mech. Phys. Solids, 47:3 (1999), 611–642 | DOI | MR | Zbl

[7] Bessonov N., Volpert V., Dynamic models of plant growth. Mathematics and Mathematical Modelling, Publibook, Paris, 2006, 68 pp. | MR | Zbl

[8] Betoue Etoughe M., Panasenko G., “Partial homogenization of discrete models”, Appl. Anal., 87:12 (2008), 1425–1442 | DOI | MR | Zbl

[9] Blanc X., Le Bris C., Lions P.-L., “From molecular models to continuum mechanics”, Arch. Ration. Mech. Anal., 164:4 (2002), 341–381 | DOI | MR | Zbl

[10] Blanc X., Le Bris C., Legoll F., “Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics”, Math. Model. Numer. Anal., 39:4 (2005), 797–826 | DOI | MR | Zbl

[11] Caillerie D., Muorad A., Raoult A., “Discrete homogenization in graphene sheet modeling”, J. Elasticity, 84:1 (2006), 33–68 | DOI | MR | Zbl

[12] Kunin I. A., Elastic media with microstructure, v. I, Springer Ser. in Solid-State Sciences, 26, One-dimensional models, Springer-Verlag, Berlin–New York, 1982, 291 pp. ; Elastic media with microstructure, v. II, Springer Ser. in Solid-State Sciences, 44, Three-dimensional models, Springer-Verlag, Berlin–New York, 1983, 272 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[13] Kurbatova P., Panasenko G., Volpert V., “Asymptotic numerical analysis of the diffusion-discrete absorption equation”, Math. Meth. Appl. Sci., 35 (2012), 438–444 | DOI | MR | Zbl

[14] Orive R., Zuazua E., “Finite difference approximation of homogenization problems for elliptic equations”, Multiscale Model. Simul., 4:1 (2005), 36–87, (electronic) | DOI | MR | Zbl

[15] Panasenko G., Multi-scale modeling for structures and composites, Springer, Dordrecht, 2005, 398 pp. | MR | Zbl

[16] Panasenko G., “The partial homogenization: continuous and semi-discretized versions”, Math. Models Methods Appl. Sci., 17:8 (2007), 1183–1209 | DOI | MR | Zbl

[17] Piatnitski A., Remy E., “Homogenization of elliptic difference operators”, SIAM J. Math. Anal., 33:1 (2001), 53–83 | DOI | MR | Zbl