Periodic solutions of the vibrating string equation with Neumann and Dirichlet boundary conditions and a discontinuous nonlinearity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 199-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a mathematical model of a vibrating string under a force that is discontinuous with respect to the state variable. It is assumed that one end of the string is fixed while the other is free. If the kernel of the operator generated by the linear part of the equation with boundary conditions and periodicity condition is zero, then the nonlinearity grows sublinearly; otherwise, it is bounded. The existence of a $2\pi$-periodic generalized solution is established by a topological method.
Keywords: nonlinear equation of a vibrating string, discontinuous nonlinearity, generalized periodic solutions, resonance case.
@article{TIMM_2012_18_2_a17,
     author = {V. N. Pavlenko and T. A. Petrash},
     title = {Periodic solutions of the vibrating string equation with {Neumann} and {Dirichlet} boundary conditions and a~discontinuous nonlinearity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--204},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a17/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - T. A. Petrash
TI  - Periodic solutions of the vibrating string equation with Neumann and Dirichlet boundary conditions and a discontinuous nonlinearity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 199
EP  - 204
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a17/
LA  - ru
ID  - TIMM_2012_18_2_a17
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A T. A. Petrash
%T Periodic solutions of the vibrating string equation with Neumann and Dirichlet boundary conditions and a discontinuous nonlinearity
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 199-204
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a17/
%G ru
%F TIMM_2012_18_2_a17
V. N. Pavlenko; T. A. Petrash. Periodic solutions of the vibrating string equation with Neumann and Dirichlet boundary conditions and a discontinuous nonlinearity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 199-204. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a17/

[1] Krasnoselskii M. A., Pokrovskii A. V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp. | MR

[2] Rudakov I. A., “Periodicheskie resheniya nelineinogo volnovogo uravneniya s granichnymi usloviyami Neimana i Dirikhle”, Izv. vuzov. Matematika, 2007, no. 2(537), 46–55 | MR | Zbl

[3] Rudakov I. A., “Periodicheskie resheniya nelineinogo volnovogo uravneniya s odnorodnymi granichnymi usloviyami”, Izv. RAN. Matematika, 70:1 (2006), 117–128 | DOI | MR | Zbl

[4] Brezis H., Nirenberg L., “Characterizations of the ranges of some nonlinear operators and applications to boundary value problems”, Ann. Scuola Norm. Pisa, 5:2 (1978), 225–325 | MR

[5] Feireisl E., “On the existance of periodic solutions of a semilinear wave equation with a superlinear forcing term”, Chechosl. Math. J., 38:1 (1988), 78–87 | MR | Zbl

[6] Pavlenko V. N., Petrash T. A., “Periodicheskie resheniya uravneniya kolebanii struny s razryvnoi nelineinostyu”, Vestn. ChelGU, 11:38(253), Fizika (2011), 61–64

[7] Pavlenko V. N., “Uravneniya parabolicheskogo tipa s razryvnoi nelineinostyu stepennogo rosta”, Vestn. ChelGU, 10:6(107), Matematika. Mekhanika. Informatika (2008), 49–53 | MR | Zbl

[8] Borisovich Yu. G. [i dr.], Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 216 pp.

[9] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR