Keywords: special solutions
@article{TIMM_2012_18_2_a15,
author = {V. Yu. Novokshenov},
title = {Special solutions of the first and second {Painlev\'e} equations and singularities of the monodromy data manifold},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {179--190},
year = {2012},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/}
}
TY - JOUR AU - V. Yu. Novokshenov TI - Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 179 EP - 190 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/ LA - ru ID - TIMM_2012_18_2_a15 ER -
%0 Journal Article %A V. Yu. Novokshenov %T Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold %J Trudy Instituta matematiki i mehaniki %D 2012 %P 179-190 %V 18 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/ %G ru %F TIMM_2012_18_2_a15
V. Yu. Novokshenov. Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 179-190. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/
[1] Gromak V. I., Lukashevich N. A., Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe, Minsk, 1990, 155 pp. | MR | Zbl
[2] Boutroux P., “Recherches sur les transcendentes de M. Painlevé et l'étude asymptotique des équations différentielles du seconde ordre”, Ann. École Norm., 30 (1913), 265–375 ; Ann. École Norm., 31 (1914), 99–159 | MR | MR | Zbl
[3] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé Transcendents. The Riemann–Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006, 560 pp. | MR | Zbl
[4] Novokshenov V. Yu., “Padé approximations of Painlevé I and II transcendents”, Theor. Math. Phys., 159:3 (2009), 853–862 | DOI | MR | Zbl
[5] Fair W., Luke Y., “Rational approximations to the solution of the second order Riccati equation”, Math. Comp., 20 (1968), 602–605 | DOI | MR
[6] Its A. R., Novokshenov V. Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lect. Notes in Math., 1191, Springer-Verlag, Berlin, 1986, 313 pp. | MR | Zbl
[7] Novokshenov V. Yu., “The Boutroux ansatz for the second Painlevé equation in the complex domain”, Izv. Akad. Nauk SSSR. Ser. Mat., 54:6 (1990), 1229–1251 | MR | Zbl
[8] Kapaev A. A., “Global asymptotics of the second Painlevé transcendent”, Phys. Lett. A, 167 (1992), 356–362 | DOI | MR
[9] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl
[10] Kapaev A. A., Kitaev A. V., “Connection formulae for the first Painlevé transcendent in the complex domain”, Lett. Math. Phys., 27:4 (1993), 243–252 | DOI | MR | Zbl
[11] Kavai T., Takei Y., Algebraic analysis of singular perturbation theory, Math. Monographs, 227, Amer. Math. Soc., Providence, RI, 2005, 130 pp. | MR
[12] Kitaev A. V., “Izomonodromnaya tekhnika i ellipticheskaya asimptotika pervogo transtsendenta Penleve”, Algebra i analiz, 5:3 (1993), 179–211 | MR | Zbl
[13] Kapaev A. A., “Quasi-linear stokes phenomenon for the Painlevé first equation”, J. Phys. A: Math. Gen., 37:46 (2004), 11149–11167 | DOI | MR | Zbl
[14] Ablowitz M. J., Segur H., “Asymptotic solutions of the Korteweg–de Vries equation”, Stud. Appl. Math., 57:1 (1977), 13–44 | MR | Zbl
[15] Dubrovin B., Grava T., Klein C., “On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronque solution to the Painlevé-I equation”, J. Nonlinear. Sci., 19:1 (2009), 57–94 | DOI | MR | Zbl
[16] Tracy C., Widom H., “On orthogonal and symplectic matrix ensembles”, Comm. Math. Phys., 177:3 (1996), 727–754 | DOI | MR | Zbl
[17] Hastings S. P., McLeod J. B., “A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation”, Arch. Rational Mech. Anal., 73 (1980), 31–51 | DOI | MR | Zbl