Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 179-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A classification of solutions of the first and second Painlevé equations corresponding to a special distribution of poles at infinity is considered. The relation between this distribution and singularities of the two-dimensional complex monodromy data manifold used for the parameterization of the solutions is analyzed. It turns out that solutions of the Painlevé equations have no poles in a certain critical sector of the complex plane if and only if their monodromy data lie in the singularity submanifold. Such solutions belong to the so-called class of “truncated” solutions (intégrales tronquée) according to P. Boutroux's classification. It is shown that all known special solutions of the first and second Painlevé equations belong to this class.
Mots-clés : Painlevé equations, isomonodromic deformations, distribution of poles, Padé approximations.
Keywords: special solutions
@article{TIMM_2012_18_2_a15,
     author = {V. Yu. Novokshenov},
     title = {Special solutions of the first and second {Painlev\'e} equations and singularities of the monodromy data manifold},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {179--190},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 179
EP  - 190
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/
LA  - ru
ID  - TIMM_2012_18_2_a15
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 179-190
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/
%G ru
%F TIMM_2012_18_2_a15
V. Yu. Novokshenov. Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 179-190. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a15/

[1] Gromak V. I., Lukashevich N. A., Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe, Minsk, 1990, 155 pp. | MR | Zbl

[2] Boutroux P., “Recherches sur les transcendentes de M. Painlevé et l'étude asymptotique des équations différentielles du seconde ordre”, Ann. École Norm., 30 (1913), 265–375 ; Ann. École Norm., 31 (1914), 99–159 | MR | MR | Zbl

[3] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé Transcendents. The Riemann–Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006, 560 pp. | MR | Zbl

[4] Novokshenov V. Yu., “Padé approximations of Painlevé I and II transcendents”, Theor. Math. Phys., 159:3 (2009), 853–862 | DOI | MR | Zbl

[5] Fair W., Luke Y., “Rational approximations to the solution of the second order Riccati equation”, Math. Comp., 20 (1968), 602–605 | DOI | MR

[6] Its A. R., Novokshenov V. Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lect. Notes in Math., 1191, Springer-Verlag, Berlin, 1986, 313 pp. | MR | Zbl

[7] Novokshenov V. Yu., “The Boutroux ansatz for the second Painlevé equation in the complex domain”, Izv. Akad. Nauk SSSR. Ser. Mat., 54:6 (1990), 1229–1251 | MR | Zbl

[8] Kapaev A. A., “Global asymptotics of the second Painlevé transcendent”, Phys. Lett. A, 167 (1992), 356–362 | DOI | MR

[9] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl

[10] Kapaev A. A., Kitaev A. V., “Connection formulae for the first Painlevé transcendent in the complex domain”, Lett. Math. Phys., 27:4 (1993), 243–252 | DOI | MR | Zbl

[11] Kavai T., Takei Y., Algebraic analysis of singular perturbation theory, Math. Monographs, 227, Amer. Math. Soc., Providence, RI, 2005, 130 pp. | MR

[12] Kitaev A. V., “Izomonodromnaya tekhnika i ellipticheskaya asimptotika pervogo transtsendenta Penleve”, Algebra i analiz, 5:3 (1993), 179–211 | MR | Zbl

[13] Kapaev A. A., “Quasi-linear stokes phenomenon for the Painlevé first equation”, J. Phys. A: Math. Gen., 37:46 (2004), 11149–11167 | DOI | MR | Zbl

[14] Ablowitz M. J., Segur H., “Asymptotic solutions of the Korteweg–de Vries equation”, Stud. Appl. Math., 57:1 (1977), 13–44 | MR | Zbl

[15] Dubrovin B., Grava T., Klein C., “On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronque solution to the Painlevé-I equation”, J. Nonlinear. Sci., 19:1 (2009), 57–94 | DOI | MR | Zbl

[16] Tracy C., Widom H., “On orthogonal and symplectic matrix ensembles”, Comm. Math. Phys., 177:3 (1996), 727–754 | DOI | MR | Zbl

[17] Hastings S. P., McLeod J. B., “A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation”, Arch. Rational Mech. Anal., 73 (1980), 31–51 | DOI | MR | Zbl