On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 170-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the asymptotic behavior of a solution of the first boundary value problem for a second-order elliptic equation in a nonconvex domain with smooth boundary in the case where the small parameter is a factor at only some of the highest derivatives and the limit equation is an ordinary differential equation. Although the limit equation has the same order as the initial equation, the problem under consideration is singulary perturbed. The asymptotic behavior of a solution of this problem is studied by the method of matched asymptotic expansions
Keywords: small parameter, asymptotic expansions.
@article{TIMM_2012_18_2_a14,
     author = {E. F. Lelikova},
     title = {On the asymptotics of a~solution to an equation with a~small parameter at some of the highest derivatives},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {170--178},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a14/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 170
EP  - 178
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a14/
LA  - ru
ID  - TIMM_2012_18_2_a14
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 170-178
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a14/
%G ru
%F TIMM_2012_18_2_a14
E. F. Lelikova. On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 170-178. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a14/

[1] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[2] Trenogin V. A., “Razvitie i prilozhenie asimptoticheskogo metoda Lyusternika–Vishika”, Uspekhi mat. nauk, 25:4(154) (1970), 123–156 | MR | Zbl

[3] Naife A., Metod vozmuschenii, Mir, M., 1976, 455 pp. | MR

[4] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967, 310 pp.

[5] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[6] Lelikova E. F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9, no. 1, 2003, 107–120 | MR | Zbl

[7] Lelikova E. F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. Mosk. mat. ob-va, 16, 2009, 187–232

[8] Lelikova E. F., “Ob asimptotike resheniya odnogo uravneniya s malym parametrom”, Dokl. RAN, 429:4 (2009), 447–450 | MR | Zbl