Reconstruction of boundary controls in hyperbolic systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 154-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The inverse problem of dynamics consisting in reconstructing of a priori unknown controls generating the observed motion of dynamic system is considered. The dynamic system is defined by a boundary value problem for the equation with private derivatives of the hyperbolic type, controls are on a boundary of the object. The source information for solving the inverse problem is results of approximate measurements of the current phase positions of the observed systems motion. The problem is solved in static case, when to solve the problem, all the cumulative during the definite observation period totality of results of measurements is used. This problem is ill-posed and to solve this problem, Tikhonovs method with a stabilizer containing the sum of root mean square norm and total variation of control in time is used. This way provides not only the convergence of regularized approximations in Lebesgue spaces but piecewise uniform convergence. This permits numerical reconstruction of desired controls subtle structure. In this paper subgradient projection method of the obtaining minimizing sequence for the Tikhonovs functional is justified, two-stage finite-dimensional approximation of the problem is described. Results of numerical experiments are presented.
Keywords: dynamical system, boundary control, measurement, inverse problem, regularization, Tikhonov's method
Mots-clés : reconstruction, observation, variation, piecewise uniform convergence.
@article{TIMM_2012_18_2_a13,
     author = {A. I. Korotkii and E. I. Gribanova},
     title = {Reconstruction of boundary controls in hyperbolic systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {154--169},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a13/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - E. I. Gribanova
TI  - Reconstruction of boundary controls in hyperbolic systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 154
EP  - 169
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a13/
LA  - ru
ID  - TIMM_2012_18_2_a13
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A E. I. Gribanova
%T Reconstruction of boundary controls in hyperbolic systems
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 154-169
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a13/
%G ru
%F TIMM_2012_18_2_a13
A. I. Korotkii; E. I. Gribanova. Reconstruction of boundary controls in hyperbolic systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 154-169. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a13/

[1] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, L., 1995, 625 pp. | MR | Zbl

[5] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta, M., 1999, 237 pp.

[6] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[7] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[8] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[9] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 304 pp.

[10] Krutko P. D., Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineinye modeli, Nauka, M., 1988, 332 pp. | MR

[11] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[12] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[13] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 288 pp. | MR

[14] Ageev A. L., “Regulyarizatsiya nelineinykh operatornykh uravnenii na klasse razryvnykh funktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 20:4 (1980), 819–826 | MR | Zbl

[15] Vasin V. V., “Regulyarizatsiya i diskretnaya approksimatsiya nekorrektnykh zadach v prostranstve funktsii ogranichennoi variatsii”, Dokl. RAN, 376:1 (2001), 11–14 | MR

[16] Vasin V. V., “Ustoichivaya approksimatsiya negladkikh reshenii nekorrektno postavlennykh zadach”, Dokl. RAN, 402:5 (2005), 586–589 | MR

[17] Vasin V. V., “Approksimatsiya negladkikh reshenii lineinykh nekorrektnykh zadach”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 64–77 | MR | Zbl

[18] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functional”, J. Inverse and Ill-Posed Problems, 15:8 (2007), 853–865 | MR | Zbl

[19] Vasin V. V., Serezhnikova T. I., “Ob odnom algoritme resheniya uravneniya Fredgolma–Stiltesa”, Izv. vuzov. Matematika, 2001, no. 4, 3–10 | MR | Zbl

[20] Vasin V. V., Serezhnikova T. I., “Dvukhetapnyi metod approksimatsii negladkikh reshenii i vosstanovlenie zashumlennogo izobrazheniya”, Avtomatika i telemekhanika, 2004, no. 2, 126–135 | MR | Zbl

[21] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 212 pp. | MR | Zbl

[22] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, LIBROKOM, M., 2010, 326 pp.

[23] Giusti E., Minimal surfaces and functions of bounded variations, Birkhauser, Basel, 1984, 239 pp. | MR | Zbl

[24] Acar R., Vogel C. R., “Analysis of bounded variation penalty method for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl

[25] Chavent G., Kunish K., “Regularization of linear least squares problems by total bounded variation control”, Optimization and Calculus of variation, 2 (1997), 359–376 | DOI | MR | Zbl

[26] Vogel C. R., Computation methods for inverse problems, SIAM, Philadelphia, 2002, 183 pp. | MR | Zbl

[27] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955, 326 pp.

[28] Clarkson J. A., Adams C. R., “On definition of bounded variation for functions of two variables”, Trans. Amer. Math. Soc., 35:4 (1933), 824–854 | DOI | MR | Zbl

[29] Korotkii M. A., “Vosstanovlenie upravlenii i parametrov metodom Tikhonova s negladkimi stabilizatorami”, Izv. vuzov. Matematika, 2009, no. 2, 76–82 | MR | Zbl

[30] Korotkii M. A., “Vosstanovlenie upravlenii staticheskim i dinamicheskim metodami regulyarizatsii s negladkimi stabilizatorami”, Prikl. matematika i mekhanika, 73:1 (2009), 39–53 | MR

[31] Korotkii M. A., Metod regulyarizatsii Tikhonova s negladkimi stabilizatorami, Dis. $\dots$ kand. fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 2009, 132 pp.

[32] Soboleva D. O., “Rekonstruktsiya upravlenii v parabolicheskikh sistemakh”, Vestn. Buryatskogo gos. un-ta. Matematika i informatika, 2010, no. 9, 59–67

[33] Korotkii A. I., Mikhailova D. O., “Vosstanovlenie upravlenii v parabolicheskikh sistemakh metodom Tikhonova s negladkimi stabilizatorami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 211–227

[34] Korotkii A. I., Gribanova E. I., “Vosstanovlenie upravlenii v giperbolicheskikh sistemakh metodom Tikhonova s negladkimi stabilizatorami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 99–108

[35] Korotkii A. I., Mikhailova D. O., “Vosstanovlenie granichnykh upravlenii v parabolicheskikh sistemakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 178–197

[36] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[37] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[38] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[39] Korotkii A. I., Pryamye i obratnye zadachi upravlyaemykh sistem s parametrami, Dis. $\dots$ d-ra fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 1993, 331 pp.

[40] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[41] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002, 824 pp.

[42] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[43] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[44] Demyanov V. F., Vasilev V. P., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR