Oscillations near a separatrix in the Duffing equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 141-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A small periodic perturbation results in a complicated dynamics near separatrices and saddle points. A two-parameter family of asymptotic solutions staying near separatrices for a long time is constructed. Solutions from this family depend nonsmoothly on the disturbance parameter. An example is given in which the values of the disturbance parameter for this family of solutions are determined by a set with structure of the type of the Cantor set.
Mots-clés : perturbation, oscillations.
Keywords: separatrix
@article{TIMM_2012_18_2_a12,
     author = {O. M. Kiselev},
     title = {Oscillations near a~separatrix in the {Duffing} equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {141--153},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a12/}
}
TY  - JOUR
AU  - O. M. Kiselev
TI  - Oscillations near a separatrix in the Duffing equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 141
EP  - 153
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a12/
LA  - ru
ID  - TIMM_2012_18_2_a12
ER  - 
%0 Journal Article
%A O. M. Kiselev
%T Oscillations near a separatrix in the Duffing equation
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 141-153
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a12/
%G ru
%F TIMM_2012_18_2_a12
O. M. Kiselev. Oscillations near a separatrix in the Duffing equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 141-153. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a12/

[1] Poincare H., Lés méthodes nouvelles de la mécanique célèste, v. III, Gauthier-Villars, Paris, 1892 | Zbl

[2] Melnikov V. K., “On the stability of the center for time periodic perturbations”, Trans. Moscow Math. Soc., 12 (1963), 1–57 | MR

[3] Alekseev V. M., “Kvazisluchainye dinamicheskie sistemy. I”, Mat. sb., 76(118):1 (1968), 72–134 ; “Квазислучайные динамические системы. II”, Мат. сб., 77(119):4 (1968), 545–601 ; “Квазислучайные динамические системы. III”, Мат. сб., 78(120):1 (1969), 3–50 | MR | Zbl | MR | Zbl | MR | Zbl

[4] Filonenko N. N., Sagdeev R. Z., Zaslavskii G. M., “Destruction of magnetic surfaces by magnetic field irregularities. Part II”, Nuclear Fussion, 7 (1967), 253–266 | DOI

[5] Piftankin G. N., Treschëv D. V., “Separatrisnoe otobrazhenie v gamiltonovykh sistemakh”, Uspekhi mat. nauk, 62:2 (2007), 3–108 | DOI | MR | Zbl

[6] Neishtadt A. I., “Passage trough a separatrix in a resonance problem with a slowly-varying parameter”, J. Appl. Math. Mech., 39:4 (1975), 594–605 | DOI | MR

[7] Timofeev A. V., “On the constancy of an adiabatic invariant when the nature of motion changes”, Soviet Physics JEPT, 48 (1978), 656–659

[8] Cary J. R., Scodje R. T., “Phase change between separatrix crossing”, Physica D, 36:3 (1989), 287–316 | DOI | MR | Zbl

[9] Neishtadt A., Vasiliev A., “Phase change between separatrix crossings in slow-fast Hamiltonian systems”, Nonlinearity, 18:3 (2005), 1393–1406 | DOI | MR | Zbl

[10] Diminnie D. C., Haberman R., “Slow passage through a saddle-center bifurcation”, J. Nonlinear Sci., 10:2 (2000), 197–221 | DOI | MR | Zbl

[11] Kiselev O. M., “Hard loss of stability in Painleve-2 equation”, J. Nonlinear Math. Phys., 8:1 (2001), 65–95 | DOI | MR | Zbl

[12] Kiselev O. M., Glebov S. G., “An asymptotic solution slowly crossing the separatrix near a saddle-centre bifurcation point”, Nonlinearity, 16:1 (2003), 327–362 | DOI | MR | Zbl

[13] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR