Analysis of the Bloch equations for the nuclear magnetization model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 123-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a system of three ordinary first-order differential equations known in the theory of nuclear magnetism as the Bloch equations. The system contains four dimensionless parameters as coefficients. Equilibrium states and the dependence of their stability on these parameters is investigated. The possibility of the appearance of two stable equilibrium states is discovered. The equations are integrable in the absence of dissipation. For the problem with small dissipation far from equilibrium, approximate solutions are constructed by the method of averaging.
Keywords: nonlinear equations, equilibrium, dissipation, stability, asymptotics, averaging.
@article{TIMM_2012_18_2_a11,
     author = {L. A. Kalyakin},
     title = {Analysis of the {Bloch} equations for the nuclear magnetization model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {123--140},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a11/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Analysis of the Bloch equations for the nuclear magnetization model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 123
EP  - 140
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a11/
LA  - ru
ID  - TIMM_2012_18_2_a11
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Analysis of the Bloch equations for the nuclear magnetization model
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 123-140
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a11/
%G ru
%F TIMM_2012_18_2_a11
L. A. Kalyakin. Analysis of the Bloch equations for the nuclear magnetization model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 123-140. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a11/

[1] Bloch F., “Nuclear Induction”, Phys. Rev., 70:7–8 (1946), 460–474 | DOI

[2] Kurkin M. I., Turov E. A., YaMR v magnitouporyadochennykh veschestvakh i ego primeneniya, Nauka, M., 1990, 248 pp.

[3] Borovik-Romanov A. S., Bunkov Yu. M., Dumesh B. S., Kurkin M. I., Petrov M. P., Chekmarev V. P., “Spinovoe ekho v sistemakh so svyazannoi yaderno-elektronnoi pretsessiei”, Uspekhi fiz. nauk, 142:4 (1984), 537–570 | DOI

[4] Kalyakin L. A., Sultanov O. A., Shamsutdinov M. A., “Asimptoticheskii analiz modeli yadernogo magnitnogo avtorezonansa”, Teoret. mat. fizika, 167:3 (2011), 419–431 | DOI

[5] Gurevich A. G., Melkov G. A., Magnitnye kolebaniya i volny, Fizmatlit, M., 1994, 231 pp.

[6] Monosov Ya. A., Nelineinyi ferromagnitnyi rezonans, Nauka, M., 1971, 376 pp.

[7] Kalyakin L. A., Shamsutdinov M. A., “Adiabaticheskie priblizheniya dlya uravnenii Landau–Lifshitsa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 104–119

[8] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial, M., 2004, 552 pp.

[9] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 503 pp. | MR

[10] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985, 300 pp.

[11] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh, Nauka, M., 1969, 316 pp.

[12] Azhotkin V. D., Babich V. M., “O primenenii metoda dvukhmasshtabnykh razlozhenii k odnochastotnoi zadache teorii nelineinykh kolebanii”, Prikl. matematika i mekhanika, 49:3 (1985), 377–383 | MR | Zbl

[13] Bryuning I., Dobrokhotov S. Yu., Poteryakhin M. A., “Ob usrednenii dlya gamiltonovykh sistem s odnoi bystroi fazoi i malymi amplitudami”, Mat. zametki, 70:5 (2001), 660–669 | DOI | MR | Zbl

[14] Arnold V. I., “O povedenii adiabaticheskogo invarianta pri medlennom periodicheskom izmenenii funktsii Gamiltona”, Dokl. AN SSSR, 142:4 (1962), 758–761 | MR

[15] Ilin A. M., “O metode dvukh masshtabov v zadache o vozmuschenii odnochastotnogo kolebaniya”, Teoret. mat. fizika, 118:3 (1999), 383–389 | DOI | MR | Zbl