On the statistical stability of input identification problems for dynamic systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 9-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An ill-posed problem of the reconstruction of input from measurements of output in a linear dynamic system is considered. Instead of the deterministic model of errors in the specification of input data, which is traditional for such problems, a stochastic model is proposed. More exactly, it is assumed that there is noise in the output measurement channel; the noise is modeled by realizations of a random element with a weak distribution in the space of outputs. To determine correctly the identification error, an extension of the space of outputs of the dynamic system is constructed. The notion of linear generalized solving procedure is introduced. Criteria for the statistic stability of the problem (the stability of the pseudo-inverse input-output operator of the system with respect to random errors in output measurements) are obtained.
Keywords: ill-posed problems, inverse problems of dynamics, statistical stability.
@article{TIMM_2012_18_2_a1,
     author = {S. A. Anikin},
     title = {On the statistical stability of input identification problems for dynamic systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {9--21},
     year = {2012},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a1/}
}
TY  - JOUR
AU  - S. A. Anikin
TI  - On the statistical stability of input identification problems for dynamic systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 9
EP  - 21
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a1/
LA  - ru
ID  - TIMM_2012_18_2_a1
ER  - 
%0 Journal Article
%A S. A. Anikin
%T On the statistical stability of input identification problems for dynamic systems
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 9-21
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a1/
%G ru
%F TIMM_2012_18_2_a1
S. A. Anikin. On the statistical stability of input identification problems for dynamic systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 2, pp. 9-21. http://geodesic.mathdoc.fr/item/TIMM_2012_18_2_a1/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[2] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[3] Kryazhimskii A. V., Osipov Yu. S., “O pozitsionnom modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekh. kibernetika, 1983, no. 2, 51–60 | MR

[4] Kirin N. E., Metody posledovatelnykh otsenok v zadachakh optimizatsii upravlyaemykh sistem, Izd-vo Leningrad. gos. un-ta, Leningrad, 1975, 165 pp. | MR

[5] Gusev M. I., Kurzhanskii A. B., “Obratnye zadachi dinamiki upravlyaemykh sistem”, Mekhanika i nauchno-tekhnicheskii progress, v. 1, Obschaya i prikladnaya mekhanika, Nauka, M., 1987, 187–195 | MR

[6] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp. | MR

[7] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach ee prilozheniya, Nauka, M., 1978, 206 pp.

[8] Fedotov A. M., Nekorrektnye zadachi so sluchainymi oshibkami v dannykh, Nauka, Sib. otd-nie, Novosibirsk, 1990, 280 pp. | MR | Zbl

[9] Terebizh V. Yu., Vvedenie v statisticheskuyu teoriyu obratnykh zadach, Fizmatlit, M., 2005, 376 pp.

[10] Sudakov V. N., Khalfin L. A., “Statisticheskii podkhod k korrektnosti zadach matematicheskoi fiziki”, Dokl. AN SSSR, 157:5 (1964), 1058–1060 | MR | Zbl

[11] Turchin V. F., Kozlov V. P., Malkevich M. S., “Ispolzovanie metodov matematicheskoi statistiki dlya resheniya nekorrektnykh zadach”, Uspekhi fiz. nauk, 102:3 (1970), 345–386

[12] Vainshtein L. A., “O chislennom reshenii integralnykh uravnenii pervogo roda s ispolzovaniem apriornykh svedenii o vostanavlivaemoi funktsii”, Dokl. AN SSSR, 204:6 (1972), 1331–1334 | MR

[13] Anikin S. A., “Ob otsenke pogreshnosti metoda regulyarizatsii A. N. Tikhonova v zadachakh vosstanovleniya vkhodov dinamicheskikh sistem”, Zhurn. vychislit. matematiki i mat. fiziki, 37:9 (1997), 1056–1067 | MR | Zbl

[14] Anikin S. A., “Identifikatsiya vkhodov kvazilineinykh sistem”, Avtomatika i telemekhanika, 2007, no. 11, 12–30 | MR | Zbl

[15] Gelfand I. M., Vilenkin N. Ya., Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961, 472 pp. | MR

[16] Gallager R., Teoriya informatsii i nadezhnaya svyaz, Sov. radio, M., 1974, 720 pp. | Zbl

[17] Vakhaniya H. H., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985, 368 pp. | MR | Zbl

[18] Go X.-C., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979, 176 pp.

[19] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975, 232 pp.

[20] Balakrishnan A. V., Prikladnoi funktsionalnyi analiz, Nauka, M., 1980, 384 pp. | MR | Zbl

[21] Vald A., “Statisticheskie reshayuschie funktsii”, Pozitsionnye igry, Nauka, M., 1967, 300–522 | MR

[22] Chentsov N. N., Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972, 520 pp. | MR

[23] Berezanskii Yu. M., Us G. F., Sheftel Z. G., Funktsionalnyi analiz, Vyscha shk., Kiev, 1990, 600 pp.

[24] Arsenev A. A., Lektsii po funktsionalnomu analizu dlya nachinayuschikh spetsialistov po matematicheskoi fizike, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009, 500 pp.

[25] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl

[26] Fedorov V. M., Teoriya funktsii i funktsionalnyi analiz, Ch. 2, Izd-vo mat.-mekh. fak. MGU, M., 2000, 192 pp.

[27] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[28] Meleshko V. I., “Vozmuscheniya neogranichennykh zamknutykh psevdoobratnykh operatorov”, Differentsialnye uravneniya, 15:4 (1979), 681–694 | MR | Zbl

[29] Krasnoselskii M. A. [i dr.], Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 499 pp. | MR

[30] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970, 800 pp.

[31] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp.