On a reconstruction algorithm for the trajectory and control in a delay system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 109-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss a problem of the dynamic reconstruction of unmeasured coordinates of the phase vector and unknown controls in nonlinear vector equations with delay. A regularizing algorithm is proposed for reconstructing both controls and unmeasured coordinates simultaneously with the processes. The algorithm is stable with respect to information noises and computational errors.
Mots-clés : dynamic reconstruction
Keywords: method of auxiliary models.
@article{TIMM_2012_18_1_a8,
     author = {M. S. Blizorukova and V. I. Maksimov},
     title = {On a~reconstruction algorithm for the trajectory and control in a~delay system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {109--122},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a8/}
}
TY  - JOUR
AU  - M. S. Blizorukova
AU  - V. I. Maksimov
TI  - On a reconstruction algorithm for the trajectory and control in a delay system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 109
EP  - 122
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a8/
LA  - ru
ID  - TIMM_2012_18_1_a8
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%A V. I. Maksimov
%T On a reconstruction algorithm for the trajectory and control in a delay system
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 109-122
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a8/
%G ru
%F TIMM_2012_18_1_a8
M. S. Blizorukova; V. I. Maksimov. On a reconstruction algorithm for the trajectory and control in a delay system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a8/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 287 pp. | MR

[2] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, SO, Novosibirsk, 1980, 286 pp. | MR

[3] Vasilev F. P., Metody resheniya nekorrektnykh zadach, Nauka, M., 1981, 400 pp. | MR

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[5] Banks H. T., Kunisch K., Estimation techniques for distributed parameter systems, Birkhauser, Boston, 1989, 316 pp. | MR | Zbl

[6] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 4, 29–41

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 420 pp. | MR

[8] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[9] Osipov Yu. S., “On reconstruction of a parameter of dynamical system”, Functional-differential equations, Proc. Int. Symp., Kyoto, Japan, 1990, 309–317

[10] Blizorukova M. S., “O modelirovanii vkhoda v sisteme s zapazdyvaniem”, Prikladnaya matematika i informatika, Tr. fak. VMiK MGU im. Lomonosova, 5, MAKS Press, M., 2000, 105–115

[11] Vasileva E. V., “Dinamicheskii metod nevyazki dlya differentsialnogo uravneniya s pamyatyu”, Problemy matematicheskoi fiziki, Dialog-MGU, M., 1998, 68–74

[12] Kadiyev A. M., Maksimov V. I., “Dynamical discrepancy method in an input reconstruction problem for a delay system”, Funct. Differ. Equ., 15:3–4 (2007), 219–237 | MR

[13] Kappel F., Maksimov V. I., “Robust dynamic input reconstruction for delay systems”, Int. J. Appl. Math. Comput. Sci., 10:2 (2000), 283–307 | MR | Zbl

[14] Maksimov V. I., “Problems of robust control and dynamical input reconstruction for time-delay systems”, Proc. of the 5th European Control Conference, Karlsruhe, Germany, 1999, 721–727

[15] Kryazhimskii A. V., Osipov Yu. S., Inverse problems for ordinary differential equations: Dynamical solution, Gordon and Breach, London, 1995, 851 pp. | MR | Zbl

[16] Kryazhimskii A. V., Osipov Yu. S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam koordinat”, Sb. nauch. tr., UrO AN SSSR, Sverdlovsk, 1989, 33–47 | MR

[17] Vdovin A. Yu., “Otsenki pogreshnosti v zadache dinamicheskogo vosstanovleniya upravleniya”, Zadachi pozitsionnogo modelirovaniya, Sb. nauch. tr., UrO AN SSSR, Sverdlovsk, 1986, 3–11