One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 82-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For arbitrary $0$, the value of the best one-sided integral approximation of the characteristic function of the interval $(-h,h)$ by trigonometric polynomials of a given degree is found.
Keywords: one-sided integral approximation of functions by polynomials.
@article{TIMM_2012_18_1_a6,
     author = {A. G. Babenko and Yu. V. Kryakin and V. A. Yudin},
     title = {One-sided approximation in~$L$ of the characteristic function of an interval by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--95},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a6/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
AU  - V. A. Yudin
TI  - One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 82
EP  - 95
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a6/
LA  - ru
ID  - TIMM_2012_18_1_a6
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%A V. A. Yudin
%T One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 82-95
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a6/
%G ru
%F TIMM_2012_18_1_a6
A. G. Babenko; Yu. V. Kryakin; V. A. Yudin. One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 82-95. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a6/

[1] Babenko A. G., “Ob odnoi ekstremalnoi zadache dlya polinomov s fiksirovannym srednim znacheniem”, Priblizhenie funktsii polinomami i splainami, UNTs AN SSSR, Sverdlovsk, 1985, 15–22

[2] Babenko A. G., Kryakin Yu. V., “Polinomialnye interpolyatsionno-ortogonalnye bazisy”, Tr. Mezhdunar. let. mat. shk. S. B. Stechkina po teorii funktsii, Iz-vo TulGU, Tula, 2007, 22–39

[3] Babenko A. G., Kryakin Yu. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki, 14, no. 3, 2008, 19–37

[4] Berezin I. S., Zhidkov N. P., Metody vychislenii, Ucheb. posob., v 2 t., v. 1, 2-e izd., stereotip., Fizmatgiz, M., 1962, 464 pp. ; т. 2, 639 с. | MR

[5] Zigmund A., Trigonometricheskie ryady, Per. s angl., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR

[6] Korneichuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. | MR

[7] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatlit, M., 1959, 327 pp. | MR

[8] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M.–L., 1948, 411 pp. | MR

[9] Polia G., Sege G., Zadachi i teoremy iz analiza, Per. s nem., v 2 ch., Ch. 1: Ryady. Integralnoe ischislenie. Teoriya funktsii, 3-e izd., Nauka, M., 1978, 391 pp.; Ч. 2: Теория функций. Распределение нулей. Полиномы. Определители. Теория чисел, 432 с.

[10] Postnikov A. G., Vvedenie analiticheskuyu teoriyu chisel, Nauka, M., 1971, 416 pp. | MR | Zbl

[11] Postnikov A. G., Izbrannye trudy, ed. V. N. Chubarikov, Fizmatlit, M., 2005, 512 pp. | MR | Zbl

[12] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[13] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, Published for the Conference Board of the Mathematical Sciences, CBMS Regional Conference Ser. Math., 84, Amer. Math. Soc. Providence, Washington, DC, 1994, 220 pp. | MR | Zbl

[14] Peherstorfer F., “Positive quadrature formulas. III. Asymptotics of weights”, Math. Comp., 77:264 (2008), 2241–2259 | DOI | MR | Zbl

[15] Shohat J., “On mechanical quadratures, in particular, with positive coefficients”, Trans. Amer. Math. Soc., 42:3 (1937), 461–496 | DOI | MR | Zbl

[16] Stekloff W., “Sur les problèmes de représentation des fonctions á l'aide de polynomes, du calcul approché des intégrales définies, du developpement des fonctions en series infinies suivant les polynomes et de l'interpolation, considérés au point de vue des idées de Tchébycheff”, Proc. of the International Mathematical Congress (Toronto, August 11–16, 1924), v. 1, The University of Toronto Press, Toronto, 1928, 631–640

[17] Stieltjes T. J., “Quelques recherches sur la theorie des quadratures dites mechaniques”, Annales Sc. de l'Ecole Norm. Super., 1:3 (1884), 409–426 | MR | Zbl

[18] Stieltjes T. J., Qeuvres completes, Collected papers, Reprint of the 1914–1918 edition. Edited and with a preface and a biographical note by Gerrit van Dijk. With additional biographical and historical material by Walter Van Assche, Frits Beukers, Wilhelmus A. J. Luxemburg and Herman J. J. te Riele, v. 1, Springer-Verlag, Berlin, 1993, 566 pp. ; v. 2, 750 pp. | MR | Zbl

[19] Vaaler J. D., “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (New Series), 12:2 (1985), 183–216 | DOI | MR | Zbl

[20] Winston C., “On mechanical quadratures formulae involving the classical orthogonal polynomials”, The Annals of Mathematics. Second Series, 35:3 (1934), 658–677 | DOI | MR | Zbl