Polynomial Volterra equations of the first kind and the Lambert function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 69-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The role of the Lambert function in the theory of polynomial Volterra equations of the first kind is considered. New results are presented in addition to the known ones. In particular, the stability of a continuous solution of the first-kind polynomial Volterra equation of degree $N$ is investigated. Based on the techniques of majorant equations, sufficient stability conditions are obtained.
Keywords: polynomial Volterra equations of the first kind, Lambert function.
@article{TIMM_2012_18_1_a5,
     author = {A. S. Apartsyn},
     title = {Polynomial {Volterra} equations of the first kind and the {Lambert} function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {69--81},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a5/}
}
TY  - JOUR
AU  - A. S. Apartsyn
TI  - Polynomial Volterra equations of the first kind and the Lambert function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 69
EP  - 81
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a5/
LA  - ru
ID  - TIMM_2012_18_1_a5
ER  - 
%0 Journal Article
%A A. S. Apartsyn
%T Polynomial Volterra equations of the first kind and the Lambert function
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 69-81
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a5/
%G ru
%F TIMM_2012_18_1_a5
A. S. Apartsyn. Polynomial Volterra equations of the first kind and the Lambert function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 69-81. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a5/

[1] Fréchet M., “Sur les fonctionneles continues”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 193–216 | MR | Zbl

[2] Apartsin A. S., Teoremy suschestvovaniya i edinstvennosti reshenii uravnenii Volterra I roda, svyazannykh s identifikatsiei nelineinykh dinamicheskikh sistem (skalyarnyi sluchai), preprint/ISEM SO RAN, SEI SO RAN, Irkutsk, 1995, 30 pp.

[3] Apartsin A. S., “O novykh klassakh lineinykh mnogomernykh uravnenii I roda tipa Volterra”, Izv. vuzov. Matematika, 1995, no. 11, 28–41 | MR | Zbl

[4] Apartsin A. S., Teoremy suschestvovaniya i edinstvennosti reshenii uravnenii Volterra I roda, svyazannykh s identifikatsiei nelineinykh dinamicheskikh sistem (vektornyi sluchai), preprint/ISEM SO RAN, SEI SO RAN, Irkutsk, 1996, 56 pp.

[5] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 495 pp. | MR | Zbl

[6] Apartsin A. S., “O polilineinykh uravneniyakh Volterra I roda”, Avtomatika i telemekhanika, 2004, no. 2, 118–125 | MR | Zbl

[7] Apartsin A. S., “Polilineinye integralnye uravneniya Volterra I roda: elementy teorii i chislennye metody”, Izv. Irkut. gos. un-ta. Ser. Matematika, 2007, no. 1, 13–41

[8] Apartsin A. S., “Polilineinye uravneniya Volterra I roda i nekotorye zadachi upravleniya”, Avtomatika i telemekhanika, 2008, no. 4, 3–16 | MR | Zbl

[9] Belbas S. A., Bulka Yu., “Numerical solution of multiple nonlinear Volterra integral equations”, Appl. Math. Comput., 217:9 (2011), 4791–4804 | DOI | MR | Zbl

[10] Apartsin A. S., “Ob ekvivalentnykh normakh v teorii polinomialnykh integralnykh uravnenii Volterra I roda”, Izv. Irkut. goc. un-ta. Ser. Matematika, 3:1 (2010), 19–29

[11] Sidorov D. N., Sidorov N. A., “Obobschennye resheniya polinomialnykh integralnykh uravnenii pervogo roda v odnoi modeli nelineinoi dinamiki”, Avtomatika i telemekhanika, 2011, no. 6, 127–132 | MR | Zbl

[12] Corless R. M., Gonnet G. H., Hare D. E. G., Jeffrey D. J., Knuth D. E., “On the Lambert W function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR | Zbl

[13] Corless R. M., Gonnet G. H., Hare D. E. G., Jeffrey D. J., “Lamberts $W$ function in Maple”, The Maple Technical Newsletter, 1993, no. 9, 12–22

[14] Corless R. M., Jeffrey D. J., Knuth D. E., “A sequence of series for the Lambert $W$ function”, Proc. ISS AC' 97, ACM Press, New York, 1997, 197–204 | DOI | MR | Zbl

[15] Dubinov A. E., Dubinova I. D., Saikov S. K., W-funktsiya Lamberta i ee primenenie v matematicheskikh zadachakh fiziki, ucheb. posobie dlya vuzov, FGUP “RFYaTs-VNIIEF”, Sarov, 2006, 160 pp.

[16] Sidorov D. N., Sidorov N. A., “Metod monotonnykh mazhorant v teorii nelineinykh uravnenii Volterra”, Izv. Irkut. gos. un-ta. Ser. Matematika, 4:1 (2011), 97–108

[17] Kantorovich L. V., “O funktsionalnykh uravneniyakh”, Uch. zap. LGU, 3:17 (1937), 24–50

[18] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, GITTL, M.–L., 1950, 550 pp.

[19] Apartsyn A. S., “Unimprovable estimates of solutions for some classes integral inequalities”, Inverse Ill-Posed Probl., 16:7 (2008), 651–680 | DOI | MR | Zbl

[20] Apartsin A. S., Spiryaev V. A., “O neuluchshaemykh lambert-otsenkakh reshenii odnogo klassa nelineinykh integralnykh neravenstv”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 3–12

[21] Apartsin A. S., “K issledovaniyu ustoichivosti resheniya polinomialnogo uravneniya Volterra I roda”, Avtomatika i telemekhanika, 2011, no. 6, 95–102 | MR

[22] Apartsin A. S., “O skhodimosti chislennykh metodov resheniya bilineinogo uravneniya Volterra I roda”, Zhurn. vychisl. matematiki i mat. fiziki, 47:8 (2007), 1380–1388 | MR

[23] Klibanov M. V. [et al.], “Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem”, Inverse Probl., 26:4 (2010), ID: 045003, 30 pp. | DOI | MR

[24] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[25] Serbulov I. I., Chislennoe reshenie integralnykh uravnenii Volterra II roda s kvadratichnoi nelineinostyu, dimlom. rabota, Irkut. gos. un-t, Irkutsk, 2011, 45 pp.