On the localization of singularities of the first kind for a function of bounded variation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 56-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Methods of the localization (detection) of discontinuities of the first kind for a function of bounded variation of one variable are constructed and investigated. We consider the problem of localizing discontinuities of a function that is noisy in the space $L_2(-\infty,+\infty)$. We distinguish between discontinuities with the absolute value of the jump greater than some positive $\Delta^{\min}$ and discontinuities satisfying a smallness condition for the value of the jump. It is required to find the number of discontinuities and localize them using the approximately given function and the error level. Since the problem is ill-posed, regularizing algorithms should be used for its solution. Under additional conditions on the exact function, we construct regular methods for the localization of discontinuities and obtain estimates for the accuracy of localization and for the separability threshold, which is another important characteristic of the method. The (order) optimality of the constructed methods on the classes of functions with singularities is established.
Keywords: ill-posed problem, discontinuity of the first kind, localization of singularities, regularizing method.
@article{TIMM_2012_18_1_a4,
     author = {A. L. Ageev and T. V. Antonova},
     title = {On the localization of singularities of the first kind for a~function of bounded variation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {56--68},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a4/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - On the localization of singularities of the first kind for a function of bounded variation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 56
EP  - 68
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a4/
LA  - ru
ID  - TIMM_2012_18_1_a4
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T On the localization of singularities of the first kind for a function of bounded variation
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 56-68
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a4/
%G ru
%F TIMM_2012_18_1_a4
A. L. Ageev; T. V. Antonova. On the localization of singularities of the first kind for a function of bounded variation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a4/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 223 pp. | MR | Zbl

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[3] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, the Netherlands, 1995, 255 pp. | MR | Zbl

[4] Ageev A. L., Antonova T. V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Ural. gos. un-ta, 2008, no. 58, Matematika. Mekhanika. Infomatika, vyp. 11, 24–42 | Zbl

[5] Winkler G., Wittich O., Liebsher V., Kempe A., “Dont shed tears over breaks”, Jahresber. Deutsch. Math.-Verein, 107:2 (2005), 57–87 | MR | Zbl

[6] Sizikov V. S., Matematicheskie metody obrabotki rezultatov izmerenii, Politekhnika, SPb., 2001, 240 pp. | MR

[7] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.

[8] Ya. A. Furman (red.), Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002, 596 pp.

[9] Gilles J., Meyer Y., “Properties of BV-G structures+textures decomposition models. Application to road detection in satellite images”, IEEE Trans. Image Process, 19:11 (2010), 2793–2800 | DOI | MR

[10] Oudshoorn C. G. M., “Asymptotically minimax estimation of a function with jumps”, Bernoulli, 4:1 (1998), 15–33 | DOI | MR | Zbl

[11] Korostelev A. P., “O minimaksnom otsenivanii razryvnogo signala”, Teoriya veroyatnostei i ee primeneniya, 32:4 (1987), 796–799 | MR | Zbl

[12] Ageev A. L., Antonova T. V., “O zadache razdeleniya osobennostei”, Izv. vuzov. Matematika, 2007, no. 11, 3–9 | MR

[13] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1-go roda po zashumlennym dannym”, Izv. vuzov. Matematika, 2001, no. 7, 65–68 | MR | Zbl

[14] Antonova T. V., “Approximation of function with finite number of discontinuities by noised data”, J. Inverse Ill-Posed Probl., 10:2 (2002), 113–123 | MR | Zbl

[15] Antonova T. V., “Solving equations of the first kind on classes of functions with singularities”, Proc. Steklov Inst. Math., 2002, S145–S189 | MR | Zbl

[16] Antonova T. V., “Novye metody lokalizatsii razryvov zashumlennoi funktsii”, Sib. zhurn. vychisl. matematiki, 13:4 (2010), 375–386

[17] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 48:8 (2008), 1362–1370 | MR | Zbl

[18] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[19] Ageev A. L., Antonova T. V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 30–45