Sparse optimization methods for seismic wavefields recovery
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 42-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Due to the influence of variations in landform, geophysical data acquisition is usually sub-sampled. Reconstruction of the seismic wavefield from sub-sampled data is an ill-posed inverse problem. It usually requires some regularization techniques to tackle the ill-posedness and provide a stable approximation to the true solution. In this paper, we consider the wavefield reconstruction problem as a compressive sensing problem. We solve the problem by constructing different kinds of regularization models and study sparse optimization methods for solving the regularization model. The $l_p$-$l_q$ model with $p=2$ and $q=0,1$ is fully studied. The projected gradient descent method, linear programming method and an $l_1$-norm constrained trust region method are developed to solve the compressive sensing problem. Numerical results demonstrate that the developed approaches are robust in solving the ill-posed compressive sensing problem and can greatly improve the quality of wavefield recovery.
Keywords: seismic inversion, optimization, sparsity, regularization.
@article{TIMM_2012_18_1_a3,
     author = {Y. F. Wang},
     title = {Sparse optimization methods for seismic wavefields recovery},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {42--55},
     year = {2012},
     volume = {18},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a3/}
}
TY  - JOUR
AU  - Y. F. Wang
TI  - Sparse optimization methods for seismic wavefields recovery
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 42
EP  - 55
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a3/
LA  - en
ID  - TIMM_2012_18_1_a3
ER  - 
%0 Journal Article
%A Y. F. Wang
%T Sparse optimization methods for seismic wavefields recovery
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 42-55
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a3/
%G en
%F TIMM_2012_18_1_a3
Y. F. Wang. Sparse optimization methods for seismic wavefields recovery. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 42-55. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a3/

[1] Cands E., Donoho D. L., “Curvelets: A surprisingly effective non-adaptive representation for objects with edges”, Curves and Surfaces Fitting, eds. A. Cohen, C. Rabut, L. L. Schumaker, Vanderbilt University Press, Nashville, TN, 2000, 105–120

[2] Cands E. J., Romberg J., Tao T., “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”, IEEE Trans. Inform. Theory, 52:2 (2006), 489–509 | DOI | MR

[3] Cands E. J., Wakin M. B., “An introduction to compressive sampling”, IEEE Signal Processing Magazine, 25:2 (2008), 21–30 | DOI

[4] Cao J. J., Wang Y. F., Zhao J. T., Yang C. C., “A review on restoration of seismic wavefields based on regularization and compressive sensing”, Inverse Problems in Science and Engineering, 19:5 (2011), 679–704 | DOI | MR | Zbl

[5] Donoho D., “Compressed sensing”, IEEE Trans. Inform. Theory, 52:4 (2006), 1289–1306 | DOI | MR

[6] Hennenfent G., Herrmann F. J., “Simply denoise: wavefield reconstruction via jittered undersam- pling”, Geophysics, 73:3 (2008), V19–V28 | DOI

[7] Herrmann F. J., Hennenfent G., “Non-parametric seismic data recovery with curvelet frames”, Geoph. J. Int., 173:1 (2008), 233–248 | DOI

[8] Herrmann F. J., Wang D. L., Hennenfent G., Moghaddam P. P., “Curvelet-based seismic data processing: a multiscale and nonlinear approach”, Geophysics, 73:1 (2008), A1–A6 | DOI

[9] Kim S.-J., Koh K., Lustig M., Boyd S., Gorinevsky D., “An interior-point method for large- scale l1-regularized least squares”, IEEE J. of Selected Topics in Signal Process, 1:4 (2007), 606–617 | DOI

[10] Mohimani H., Babaie-Zadeh M., Jutten C., “A fast approach for overcomplete sparse decomposition based on smoothed $l^0$ norm”, IEEE Trans. Signal Process, 57:1 (2009), 289–301 | DOI | MR

[11] Tikhonov A. N., Arsenin V. Y., Solutions of ill-posed Problems, John Wiley Sons, New York, 1977, 258 pp. | MR | Zbl

[12] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, 1995, 255 pp. | MR | Zbl

[13] Wang Y. F., Yuan Y. X., “Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems”, Inverse Problems, 21:3 (2005), 821–838 | DOI | MR | Zbl

[14] Wang Y. F., Computational Methods for Inverse Problems and Their Applications, Higher Education Press, Beijing, 2007

[15] Wang Y. F., Ma S. Q., “Projected Barzilai-Borwein methods for large scale nonnegative image restorations”, Inverse Probl. Sci. Eng., 15:6 (2007), 559–583 | DOI | MR | Zbl

[16] Wang Y. F., Fan S. F., Feng X., “Retrieval of the aerosol particle size distribution function by incorporating a priori information”, J. Aerosol Science, 38:8 (2007), 885–901 | DOI

[17] Wang Y. F., Cao J. J., Yuan Y. X., Yang C. C., Xiu N. H., “Regularizing active set method for nonnegatively constrained ill-posed multichannel image restoration problem”, Applied Optics, 48:7 (2009), 1389–1401 | DOI

[18] Wang Y. F., Ma S. Q., Yang H., Wang J. D., Li X. W., “On the effective inversion by imposing a priori information for retrieval of land surface parameters”, Science in China. Ser. D, 52:4 (2009), 540–549 | DOI

[19] Wang Y. F., Yang C. C., Cao J. J., “On Tikhonov regularization and compressive sensing for seismic signal processing”, Math. Models and Methods in Applied Sciences, 22:2 (2012), 1150008, 24 pp.

[20] Wang Y. F., Yang C. C., “Accelerating migration deconvolution using a nonmonotone gradient method”, Geophysics, 75:4 (2010), S131–S137 | DOI

[21] Wang Y. F., Cao J. J., Yang C. C., “Recovery of seismic wavefields based on compressive sensing by an $l_1$-norm constrained trust region method and the piecewise random sub-sampling”, Geoph. J. Int., 187:1 (2011), 199–213 | DOI

[22] Wang Y. F., Stepanova I. E., Titarenko V. N., Yagola A. G., Inverse Problems in Geophysics and Solution Methods, HEP Series in Global Change and Earth System Science, Higher Education Press, Beijing, 2011

[23] Wang Y. F., Cao J. J., Yang C. C., “Seismic wavefields interpolation based on regularization and compressive sensing”, Computational Methods for Applied Inverse Problems, eds. Y. F. Wang, A. G. Yagola, C. C. Yang, Higher Education Press, Beijing; De Gruyter, Berlin, 2011

[24] Ye Y. Y., Interior-point algorithm: Theory and analysis, John Wiley and Sons, New York, 1997, 418 pp. | MR

[25] Yuan Y. X., Numerical methods for nonliear programming, Shanghai Science and Technology Publication, Shanghai, 1993