Multistep iterative method for solving linear operator equations in Banach spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 318-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Multistep iterative method for solving the linear operator equation $Ax=y$ with $B$-symmetric $B$-positive operator acting from a Banach space $X$ to a Banach space $Y$ is considered. The space $X$ is assumed to be $p$-convex and uniformly smooth, whereas $Y$ is an arbitrary Banach space. The case of exact data is considered and the weak and strong (norm) convergences of the iterative process are proved.
Keywords: iterative method, duality mapping, $B$-symmetric operator, $B$-positive operator, Bregman distance, Bregman projection, uniformly convex space, smooth space, Xu–Roach characteristic inequality, modulus of smoothness of a space.
@article{TIMM_2012_18_1_a25,
     author = {P. A. Chistyakov},
     title = {Multistep iterative method for solving linear operator equations in {Banach} spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {318--328},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a25/}
}
TY  - JOUR
AU  - P. A. Chistyakov
TI  - Multistep iterative method for solving linear operator equations in Banach spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 318
EP  - 328
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a25/
LA  - ru
ID  - TIMM_2012_18_1_a25
ER  - 
%0 Journal Article
%A P. A. Chistyakov
%T Multistep iterative method for solving linear operator equations in Banach spaces
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 318-328
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a25/
%G ru
%F TIMM_2012_18_1_a25
P. A. Chistyakov. Multistep iterative method for solving linear operator equations in Banach spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 318-328. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a25/

[1] Schöpfer F., Louis A. K., Schuster T., “Nonlinear iterative methods for linear ill-posed problems in Banach spaces”, Inverse Probl., 22 (2006), 311–329 | DOI | MR

[2] Chistyakov P. A., “Iteratsionnye metody resheniya lineinykh operatornykh uravnenii v banakhovykh prostranstvakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 303–318

[3] Schöpfer F., Schuster T., Louis A. K., “Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods”, J. Inverse Ill-posed Probl., 16:5 (2008), 479–506 | DOI | MR

[4] Schöpfer F., Schuster T., “Fast regularizing sequential subspace optimization in Banach spaces”, Inverse Probl., 25:1 (2009), 015013, 22 pp. | DOI | MR

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[6] Cioranescu I., Geometry of Banach spaces, duality mappings, and nonlinear problems, Kluwer, Dordrecht, 1990, 260 pp. | MR | Zbl

[7] Distel Dzh., Geometriya banakhovykh prostranstv: izbrannye glavy, Vischa shkola, Kiev, 1980, 216 pp. | MR

[8] Bregman L. M., “Relaksatsionnyi metod nakhozhdeniya obschei tochki vypuklykh mnozhestv i ego primenenie dlya resheniya zadach vypuklogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 7:3 (1967), 620–631 | MR | Zbl

[9] Xu Z. B., Roach G. F., “Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces”, J. Math. Anal. Appl., 157 (1991), 189–210 | DOI | MR | Zbl