On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 289-297

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence in the mean-square metric of the Lavrent'ev regularization method for an integral equation with involution is established. The proof of the convergence is based on studying the behavior of the resolvent of a certain integro-differential equation related to the original equation.
Keywords: integral equation, regularization, involution, resolvent.
@article{TIMM_2012_18_1_a23,
     author = {A. P. Khromov and G. V. Khromova},
     title = {On the convergence of the {Lavrent'ev} method for an integral equation of the first kind with involution},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {289--297},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/}
}
TY  - JOUR
AU  - A. P. Khromov
AU  - G. V. Khromova
TI  - On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 289
EP  - 297
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/
LA  - ru
ID  - TIMM_2012_18_1_a23
ER  - 
%0 Journal Article
%A A. P. Khromov
%A G. V. Khromova
%T On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 289-297
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/
%G ru
%F TIMM_2012_18_1_a23
A. P. Khromov; G. V. Khromova. On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 289-297. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/