On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 289-297
Cet article a éte moissonné depuis la source Math-Net.Ru
The convergence in the mean-square metric of the Lavrent'ev regularization method for an integral equation with involution is established. The proof of the convergence is based on studying the behavior of the resolvent of a certain integro-differential equation related to the original equation.
Keywords:
integral equation, regularization, involution, resolvent.
@article{TIMM_2012_18_1_a23,
author = {A. P. Khromov and G. V. Khromova},
title = {On the convergence of the {Lavrent'ev} method for an integral equation of the first kind with involution},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {289--297},
year = {2012},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/}
}
TY - JOUR AU - A. P. Khromov AU - G. V. Khromova TI - On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 289 EP - 297 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/ LA - ru ID - TIMM_2012_18_1_a23 ER -
%0 Journal Article %A A. P. Khromov %A G. V. Khromova %T On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution %J Trudy Instituta matematiki i mehaniki %D 2012 %P 289-297 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/ %G ru %F TIMM_2012_18_1_a23
A. P. Khromov; G. V. Khromova. On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 289-297. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/
[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR
[2] Khromova G. V., “O skhodimosti metoda M. M. Lavrenteva”, Zhurn. vychisl. matematiki i mat. fiziki, 49:6 (2009), 958–965 | MR | Zbl
[3] Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s peremennymi predelami integrirovaniya”, Integralnye preobrazovaniya i spetsialnye funktsii, Inform. byulleten, 6, no. 1, Izd-vo VTs RAN, M., 2006, 46–55
[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.