On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 289-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The convergence in the mean-square metric of the Lavrent'ev regularization method for an integral equation with involution is established. The proof of the convergence is based on studying the behavior of the resolvent of a certain integro-differential equation related to the original equation.
Keywords: integral equation, regularization, involution, resolvent.
@article{TIMM_2012_18_1_a23,
     author = {A. P. Khromov and G. V. Khromova},
     title = {On the convergence of the {Lavrent'ev} method for an integral equation of the first kind with involution},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {289--297},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/}
}
TY  - JOUR
AU  - A. P. Khromov
AU  - G. V. Khromova
TI  - On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 289
EP  - 297
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/
LA  - ru
ID  - TIMM_2012_18_1_a23
ER  - 
%0 Journal Article
%A A. P. Khromov
%A G. V. Khromova
%T On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 289-297
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/
%G ru
%F TIMM_2012_18_1_a23
A. P. Khromov; G. V. Khromova. On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 289-297. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a23/

[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR

[2] Khromova G. V., “O skhodimosti metoda M. M. Lavrenteva”, Zhurn. vychisl. matematiki i mat. fiziki, 49:6 (2009), 958–965 | MR | Zbl

[3] Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s peremennymi predelami integrirovaniya”, Integralnye preobrazovaniya i spetsialnye funktsii, Inform. byulleten, 6, no. 1, Izd-vo VTs RAN, M., 2006, 46–55

[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.