On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 281-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An inverse Cauchy problem is solved by the nonlinear projection regularization method under the assumption that the required solution is smooth.
Keywords: operator equations, regularization, method, error estimate, ill-posed problem.
@article{TIMM_2012_18_1_a22,
     author = {V. P. Tanana and A. B. Bredikhina and T. S. Kamaltdinova},
     title = {On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {281--288},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a22/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. B. Bredikhina
AU  - T. S. Kamaltdinova
TI  - On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 281
EP  - 288
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a22/
LA  - ru
ID  - TIMM_2012_18_1_a22
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. B. Bredikhina
%A T. S. Kamaltdinova
%T On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 281-288
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a22/
%G ru
%F TIMM_2012_18_1_a22
V. P. Tanana; A. B. Bredikhina; T. S. Kamaltdinova. On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 281-288. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a22/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[2] Ivanov V. K., Korshunov V. A., Reshetova T. N., Tanana V. P., “O vozmozhnosti opredeleniya energeticheskogo spektra boze-sistemy po termodinamicheskim funktsiyam”, Dokl. AN SSSR, 228:1 (1976), 19–22 | MR | Zbl

[3] Krein S. G., Funktsionalnyi analiz, Nauka, M., 1972, 544 pp. | MR | Zbl

[4] Tanana V. P., Yaparova N. M., “Ob optimalnom po poryadku metode resheniya uslovno-korrektnykh zadach”, Sib. zhurn. vychisl. matematiki, 9:4 (2006), 353–368

[5] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR