Two-dimensional problem for an integrodifferential equation of electrodynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 273-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An integrodifferential equation corresponding to the two-dimensional problem of electrodynamics with dispersion is considered. It is assumed that the electrodynamic properties of a nonconducting medium with a constant magnetic permeability and the external current are independent of the $x_3$ coordinate. In this case, the third component of the electric field vector satisfies a second-order scalar integrodifferential equation with a variable permittivity of the medium. For this equation, we study the problem of finding the spatial part of the kernel entering the integral term. This corresponds to finding the part of the permittivity that depends on the electromagnetic frequency. It is assumed that the permittivity support is contained in some compact domain $\Omega\subset\mathbb R^2$. To find this coefficient inside $\Omega$, we use information on the solution of the corresponding direct problem on the boundary of $\Omega$ on a finite time interval. An estimate for the conditional stability of the solution of the inverse problem is established under the assumption that the time interval is sufficiently large.
Keywords: inverse problem, electrodynamics equations, hyperbolic equation, stability, uniqueness.
@article{TIMM_2012_18_1_a21,
     author = {V. G. Romanov},
     title = {Two-dimensional problem for an integrodifferential equation of electrodynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {273--280},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a21/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Two-dimensional problem for an integrodifferential equation of electrodynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 273
EP  - 280
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a21/
LA  - ru
ID  - TIMM_2012_18_1_a21
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Two-dimensional problem for an integrodifferential equation of electrodynamics
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 273-280
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a21/
%G ru
%F TIMM_2012_18_1_a21
V. G. Romanov. Two-dimensional problem for an integrodifferential equation of electrodynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 273-280. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a21/

[1] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005, 296 pp. | MR

[2] Lorenzi A., Messina F., Romanov V. G., “Recovering a Lamé kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | DOI | MR | Zbl

[3] Romanov V. G., Yamamoto M., “Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement”, Appl. Anal., 89:3 (2010), 377–390 | DOI | MR | Zbl

[4] Bukhgeim A. L., Klibanov M. V., “Edinstvennost v tselom odnogo klassa mnogomernykh obratnykh zadach”, Dokl. AN SSSR, 260:2 (1981), 269–272 | MR

[5] Romanov V. G., “Otsenka ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. rabot, Izd-vo In-ta matematiki, Novosibirsk, 2010, 246–253

[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979, 760 pp. | MR

[7] Romanov V. G., “Otsenki resheniya odnogo differentsialnogo neravenstva”, Sib. mat. zhurn., 47:3 (2006), 626–635 | MR | Zbl