Asymptotics of a solution to the heat equation with a singularity at the boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 268-272
Voir la notice du chapitre de livre
The third boundary value problem for a second-order parabolic equation in a half-space with singularity is considered. The singularity consists in the presence of a moving band heat source with delta-like source intensity function at the boundary of the domain. An exact analytic solution of the problem is found, and the behavior of this solution in a neighborhood of the singularity is investigated.
Keywords:
boundary value problems for partial differential equations, asymptotics of a solution.
@article{TIMM_2012_18_1_a20,
author = {I. V. Pershin},
title = {Asymptotics of a~solution to the heat equation with a~singularity at the boundary},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {268--272},
year = {2012},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a20/}
}
I. V. Pershin. Asymptotics of a solution to the heat equation with a singularity at the boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 268-272. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a20/
[1] Babich V. M., Rapoport Yu. O., “Asimptotika pri malykh vremenakh fundamentalnogo resheniya zadachi Koshi dlya parabolicheskogo uravneniya vtorogo poryadka”, Problemy mat. fiziki, 7, Izd-vo LGU, L., 1974, 21–38
[2] Babich V. M., “Anzats Adamara, ego analogi, oboscheniya, prilozheniya”, Algebra i analiz, 3:5 (1991), 1–37 | MR | Zbl
[3] Pershin I. V., “Postroenie asimptotiki funktsii Grina v okrestnosti osoboi tochki”, Differents. uravneniya, 37:6 (2001), 842–843 | MR | Zbl