Mots-clés : source conditions
@article{TIMM_2012_18_1_a2,
author = {Bernd Hofmann and Peter Math\'e},
title = {A note on the modulus of continuity for ill-posed problems in {Hilbert} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {34--41},
year = {2012},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a2/}
}
TY - JOUR AU - Bernd Hofmann AU - Peter Mathé TI - A note on the modulus of continuity for ill-posed problems in Hilbert space JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 34 EP - 41 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a2/ LA - en ID - TIMM_2012_18_1_a2 ER -
Bernd Hofmann; Peter Mathé. A note on the modulus of continuity for ill-posed problems in Hilbert space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 34-41. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a2/
[1] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Math. and its Appl., 375, Kluwer Acad. Publ. Group, Dordrecht, 1996, 321 pp. | MR | Zbl
[2] Flemming J., Hofmann B., Math P., “Sharp converse results for the regularization error using distance functions”, Inverse Problems, 27:2 (2011), 025006, 18 pp. | DOI | MR | Zbl
[3] Hofmann B., Fleischer G., “Stability rates for linear ill-posed problems with compact and noncompact operators”, Z. Anal. Anwendungen., 18:2 (1999), 267–286 | MR | Zbl
[4] Hofmann B., Kindermann S., “On the degree of ill-posedness for linear problems with non-compact operators”, Methods Appl. Anal., 17:4 (2010), 445–462 | MR | Zbl
[5] Hofmann B., Mathé P., “Analysis of profile functions for general linear regularization methods”, SIAM J. Numer. Anal., 45:3 (2007), 1122–1141 | DOI | MR | Zbl
[6] Hofmann B., Mathé P., Schieck M., “Modulus of continuity for conditionally stable ill-posed problems in Hilbert space”, J. Inverse Ill-Posed Probl., 16:6 (2008), 567–585 | DOI | MR | Zbl
[7] Hofmann B., von Wolfersdorf L., “Some results and a conjecture on the degree of ill-posedness for integration operators with weights”, Inverse Problems, 21:2 (2005), 427–433 | DOI | MR | Zbl
[8] Ivanov V. K., Korolyuk T. I., “Error estimates for solutions of incorrectly posed linear problems”, USSR Comput. Math. Math. Phys., 9:1 (1969), 35–49 | DOI | MR | Zbl
[9] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Inverse and Ill-posed Probl. Ser., VSP, Utrecht, 2002, 218 pp. | MR | Zbl
[10] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. Shkola, Moscow, 1982, 272 pp. | MR | Zbl
[11] Mathé P., Hofmann B., “Direct and inverse results in variable Hilbert scales”, J. Approx. Theory, 154:2 (2008), 77–89 | DOI | MR | Zbl
[12] Mathé P., Pereverzev S. V., “Geometry of linear ill-posed problems in variable Hilbert scales”, Inverse Problems, 19:3 (2003), 789–803 | DOI | MR | Zbl
[13] Mathé P., Pereverzev S. V., “Discretization strategy for linear ill-posed problems in variable Hilbert scales”, Inverse Problems, 19:6 (2003), 1263–1277 | DOI | MR | Zbl
[14] Nashed M. Z., “A new approach to classification and regularization of ill-posed operator equations”, Inverse and Ill-posed Problems, Notes Rep. Math. Sci. Engrg., 4, Acad. Press, Boston, 1987, 53–75 | MR
[15] Neubauer A., “On converse and saturation results for regularization methods”, Beiträge zur angewandten Analysis und {I}nformatik, Shaker, Aachen, 1994, 262–270 | MR | Zbl
[16] Neubauer A., “On converse and saturation results for Tikhonov regularization of linear ill-posed problems”, SIAM J. Numer. Anal., 34:2 (1997), 517–527 | DOI | MR | Zbl
[17] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Acad. Press, New York, 1980, 400 pp. | MR | Zbl
[18] Rudin W., Functional analysis, McGraw-Hill Ser. in Higher Math., McGraw-Hill Book Co., New York, 1973, 397 pp. | MR | Zbl
[19] Tautenhahn U., Hamarik U., Hofmann B., Shao Y., Conditional stability estimates for illposed PDE problems by using interpolation, Preprint 2011-16, Preprint Ser. of Department of Math., Technische Universitat, Chemnitz, 2011, 40 pp. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-72654
[20] Vasin V. V., “The method of quasi-solutions by Ivanov is the effective method of solving ill-posed problems”, J. Inverse Ill-Posed Probl., 16:6 (2008), 537–552 | DOI | MR | Zbl
[21] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, Inverse and Ill-Posed Probl. Ser., VSP, Utrecht, 1995, 255 pp. | MR | Zbl
[22] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functionals”, J. Inverse Ill-Posed Probl., 15:8 (2007), 853–865 | DOI | MR | Zbl
[23] Werner D., Funktionalanalysis, Springer-Verlag, Berlin, 2007, 531 pp. | MR