The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 251-267

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence, uniqueness, and stability of a solution to the Cauchy problem for a stochastic differential equation with multiplicative noise in the spaces of generalized random variables with values in a Hilbert space.
Keywords: Cauchy problem, semigroup, white noise, generalized solutions.
@article{TIMM_2012_18_1_a19,
     author = {I. V. Melnikova and M. A. Alshanskiy},
     title = {The generalized well-posedness of the {Cauchy} problem for an abstract stochastic equation with multiplicative noise},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {251--267},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a19/}
}
TY  - JOUR
AU  - I. V. Melnikova
AU  - M. A. Alshanskiy
TI  - The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 251
EP  - 267
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a19/
LA  - ru
ID  - TIMM_2012_18_1_a19
ER  - 
%0 Journal Article
%A I. V. Melnikova
%A M. A. Alshanskiy
%T The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 251-267
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a19/
%G ru
%F TIMM_2012_18_1_a19
I. V. Melnikova; M. A. Alshanskiy. The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 251-267. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a19/