On the topology of elliptic curves
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 242-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with studying the everywhere density of the set of rational points on an elliptic curve. V. N. Ushakov's conjecture, which is related to the topology of elliptic curves, is investigated. Elliptic curves and Weierstrass functions with real invariants are considered. A criterion of the everywhere density of a set of points on a curve is proved. The rank of an elliptic curve is calculated numerically.
Keywords: elliptic curve, elliptic integral, everywhere density, rank, $L$-function.
@article{TIMM_2012_18_1_a18,
     author = {N. V. Medvedev and S. S. Titov},
     title = {On the topology of elliptic curves},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {242--250},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a18/}
}
TY  - JOUR
AU  - N. V. Medvedev
AU  - S. S. Titov
TI  - On the topology of elliptic curves
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 242
EP  - 250
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a18/
LA  - ru
ID  - TIMM_2012_18_1_a18
ER  - 
%0 Journal Article
%A N. V. Medvedev
%A S. S. Titov
%T On the topology of elliptic curves
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 242-250
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a18/
%G ru
%F TIMM_2012_18_1_a18
N. V. Medvedev; S. S. Titov. On the topology of elliptic curves. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 242-250. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a18/

[1] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970, 304 pp. | MR | Zbl

[2] Bashmakova I. G., Diofant i diofantovy uravneniya, Nauka, M., 1972, 68 pp. | MR

[3] A. A. Bolotov [i dr.], Elementarnoe vvedenie v ellipticheskuyu kriptografiyu: Algebraicheskie i algoritmicheskie osnovy, KomKniga, M., 2006, 328 pp.

[4] Bolotova E. A., Konovalova S. S., Titov S. S., “Svoistva reshetok razgranicheniya dostupa, sovershennye shifry i skhemy razdeleniya sekreta”, Problemy bezopasnosti i protivodeistviya terrorizmu, Materialy IV Mezhdunar. nauch. konf., v. 2, MTsNMO, M., 2009, 71–86

[5] V. V. Yaschenko (obsch. red.), Vvedenie v kriptografiyu, Piter, SPb., 2001, 288 pp.

[6] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik dlya vuzov, Gelios ARV, M., 2003, 336 pp.

[7] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikl. diskret. matematika, 2008, no. 2, 28–32

[8] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Mir, M., 1983, 280 pp. | MR

[9] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[10] Knepp E., Ellipticheskie krivye, Faktorial Press, M., 2004, 488 pp.

[11] Kolyvagin V. A., “O gruppakh Mordella–Veilya i Shafarevicha–Teita dlya ellipticheskikh krivykh Veilya”, Izv. AN SSSR. Ser. mat., 52:6 (1988), 1154–1180 | MR | Zbl

[12] Makarov B. M., Goluzina M. G., Lodkin A. A., Izbrannye zadachi po veschestvennomu analizu, Nauka, M., 1992, 432 pp. | MR

[13] Markushevich A. I., Vvedenie v klassicheskuyu teoriyu abelevykh funktsii, Nauka, M., 1979, 240 pp. | MR | Zbl

[14] Yu. S. Kharin [i dr.], Matematicheskie i kompyuternye osnovy kriptologii, Uch. posobie dlya vuzov, Novoe znanie, Minsk, 2003, 381 pp.

[15] Medvedev N. V., “Algoritm shifrovaniya SAFER i vozmozhnosti ego uluchsheniya”, Problemy teoreticheskoi i prikladnoi matematiki, Tez. dokl. 41-i Vseros. mol. konf., IMM UrO RAN, Ekaterinburg, 2010, 482–486

[16] Medvedev N. V., Titov S. S., “Pochti-porogovye skhemy razdeleniya sekreta na ellipticheskikh krivykh”, Dokl. Tomskogo gos. un-ta sistem upravleniya i radioelektroniki, 2011, no. 1(23), ch. 1, 91–96

[17] Pontryagin L. S., Nepreryvnye gruppy, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1954, 515 pp. | MR

[18] Satton M., Grin A., Amini P., Fuzzing. Issledovanie uyazvimostei metodom gruboi sily, Simvol-Plyus, M., 2009, 560 pp.

[19] Sidorov A. F., Izbrannye trudy. Matematika, mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[20] Ushakov V. N., Teorema Chevy i nekotorye osobennosti geometrii piramidy Kheopsa, Zhivoi zhurnal, URL: , (data obrascheniya 24.08.2011) http://ushakov-vn.livejournal.com/761.html

[21] Yu. P. Solovev [i dr.], Ellipticheskie krivye i sovremennye algoritmy teorii chisel, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 191 pp.

[22] Wiles A., Carlson J., Jaffe A., “The Birch and Swinnerton-Dyer conjecture”, The millennium prize problems, Clay Math. Inst., Cambridge, 2006, 31–44 | MR