Mots-clés : automorphism.
@article{TIMM_2012_18_1_a17,
author = {A. A. Makhnev and L. Yu. Tsiovkina},
title = {On automorphisms of a~distance-regular graph with intersection array $\{35,32,8;1,2,28\}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {235--241},
year = {2012},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a17/}
}
TY - JOUR
AU - A. A. Makhnev
AU - L. Yu. Tsiovkina
TI - On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$
JO - Trudy Instituta matematiki i mehaniki
PY - 2012
SP - 235
EP - 241
VL - 18
IS - 1
UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a17/
LA - ru
ID - TIMM_2012_18_1_a17
ER -
%0 Journal Article
%A A. A. Makhnev
%A L. Yu. Tsiovkina
%T On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 235-241
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a17/
%G ru
%F TIMM_2012_18_1_a17
A. A. Makhnev; L. Yu. Tsiovkina. On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 235-241. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a17/
[1] Burichenko V. P., Makhnev A. A., “O vpolne regulyarnykh lokalno tsiklicheskikh grafakh”, Sovremennye problemy matematiki, Tez. XLII Vseros. mol. konf., IMM UrO RAN, Ekaterinburg, 2011, 181–183
[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, etc., 1989, 494 pp. | MR | Zbl
[3] Cameron P. J., Permutation Groups, London Math. Soc. Stud. Texts, 45, Cambr. Univ. Press, Cambridge, 1999, 220 pp. | Zbl
[4] Cameron P. J., van Lint J. H., Designs, graphs, codes and their links, London Math. Soc. Stud. Texts, 22, Cambr. Univ. Press, Cambridge, 1991, 240 pp. | MR | Zbl
[5] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 512–515