Adapted cylindrical coordinates for internal volumes of structural elements of a solid-propellant rocket engine
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 213-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for constructing orthogonal curvilinear computational grids based on an adapted system of cylindrical coordinates is proposed. The paper is devoted to constructing such grids for subsonic and supersonic parts of a Laval nozzle. Curvilinear computational grids constructed by the proposed method for various shapes of a Laval nozzle are presented.
Keywords: orthogonal curvilinear coordinate system, adapted cylindrical coordinates, computational grids, Laval nozzle.
@article{TIMM_2012_18_1_a15,
     author = {A. M. Lipanov and M. R. Koroleva and S. Yu. Dadikina},
     title = {Adapted cylindrical coordinates for internal volumes of structural elements of a~solid-propellant rocket engine},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {213--221},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a15/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - M. R. Koroleva
AU  - S. Yu. Dadikina
TI  - Adapted cylindrical coordinates for internal volumes of structural elements of a solid-propellant rocket engine
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 213
EP  - 221
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a15/
LA  - ru
ID  - TIMM_2012_18_1_a15
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A M. R. Koroleva
%A S. Yu. Dadikina
%T Adapted cylindrical coordinates for internal volumes of structural elements of a solid-propellant rocket engine
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 213-221
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a15/
%G ru
%F TIMM_2012_18_1_a15
A. M. Lipanov; M. R. Koroleva; S. Yu. Dadikina. Adapted cylindrical coordinates for internal volumes of structural elements of a solid-propellant rocket engine. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 213-221. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a15/

[1] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, v. 2, Mir, M., 1991, 552 pp. | MR

[2] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, v. 2, Mir, M., 1990, 337 pp. | Zbl

[3] Thompson J. F., Warsiz U. A., Mastin C. W., Numerical grid generation: foundation and applications, North-Holland, New-York, 1985, 484 pp. | MR | Zbl

[4] Sidorov A. F., Ushakova O. V., Khairullina O. B., Variatsionnye metody postroeniya optimalnykh setok, Izd-vo IMM UrO RAN, Ekaterinburg, 1997, 50 pp.

[5] Gromadka P. T., Lei Ch., Kompleksnyi metod granichnykh elementov v inzhenernykh zadachakh, Mir, M., 1990, 303 pp. | MR

[6] Tenenev V. A., Rusyak I. G., Chislennoe reshenie zadach gidrodinamiki i teploobmena v oblastyakh slozhnoi formy, Izd-vo IzhGTU, Izhevsk, 1996, 60 pp.

[7] Lipanov A. M., Aliev A. V., Proektirovanie raketnykh dvigatelei tverdogo topliva, Mashinostroenie, M., 1995, 400 pp.

[8] Kochin N. E., Vektornoe ischislenie i nachalo tenzornogo ischisleniya, Nauka, M., 1965, 450 pp.

[9] Lipanov A. M., Kisarov Yu. F., Klyuchnikov I. G., Chislennyi eksperiment v klassicheskoi gidromekhanike turbulentnykh potokov, UrO RAN, Ekaterinburg, 2001, 161 pp.