Higher-order total variations for functions of several variables and their application in the theory of ill-posed problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 198-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the space of functions of two variables with Hardy–Krause property, new notions of higher-order total variations and Banach spaces of functions of two variables with bounded higher variations are introduced. The connection of these spaces with Sobolev spaces $W^m_1$, $m\in\mathbb N$, is studied. In Sobolev spaces, a wide class of integral functionals with the weak regularization properties and the $H$-property is isolated. It is proved that the application of these functionals in the Tikhonov variational scheme generates for $m\ge3$ the convergence of approximate solutions with respect to the total variation of order $m-3$. The results are naturally extended to the case of functions of $N$ variables.
Keywords: higher-order total variations for functions of several variables, regularization of ill-posed problems.
@article{TIMM_2012_18_1_a14,
     author = {A. S. Leonov},
     title = {Higher-order total variations for functions of several variables and their application in the theory of ill-posed problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {198--212},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a14/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Higher-order total variations for functions of several variables and their application in the theory of ill-posed problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 198
EP  - 212
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a14/
LA  - ru
ID  - TIMM_2012_18_1_a14
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Higher-order total variations for functions of several variables and their application in the theory of ill-posed problems
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 198-212
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a14/
%G ru
%F TIMM_2012_18_1_a14
A. S. Leonov. Higher-order total variations for functions of several variables and their application in the theory of ill-posed problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 198-212. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a14/

[1] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 260 pp. | MR

[2] Vasin V. V., “Regulyarizatsiya i diskretnaya approksimatsiya nekorrektnykh zadach v prostranstve funktsii ogranichennoi variatsii”, Dokl. RAN, 376:1 (2001), 11–14 | MR

[3] Vasin V. V., “Regularization and iterative approximation for linear ill-posed problems in the space of function of bounded variation”, Proc. Steklov Inst. Math., 2002, S225–S239 | MR | Zbl

[4] Vasin V. V., “Ustoichivaya approksimatsiya negladkikh reshenii nekorrektno postavlennykh zadach”, Dokl. RAN, 402:5 (2005), 586–589 | MR

[5] Vasin V. V., “Approksimatsiya negladkikh reshenii lineinykh nekorrektnykh zadach”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 64–77 | MR | Zbl

[6] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functional”, J. Inverse Ill-Posed Probl., 15:8 (2007), 853–865 | DOI | MR | Zbl

[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 312 pp. | MR | Zbl

[8] Leonov A. S., “Funktsii neskolkikh peremennykh s ogranichennoi variatsiei v nekorrektnykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 36:9 (1996), 35–49 | MR | Zbl

[9] Leonov A. S., “Ob ispolzovanii funktsii neskolkikh peremennykh s ogranichennoi variatsiei dlya kusochno-ravnomernoi regulyarizatsii nekorrektnykh zadach”, Dokl. AN SSSR, 351:5 (1996), 592–595 | MR | Zbl

[10] Leonov A. S., “O mnogomernykh nekorrektnykh zadachakh s razryvnymi resheniyami”, Sib. mat. zhurn., 39:1 (1998), 74–86 | MR | Zbl

[11] Leonov A. S., “Primenenie funktsii neskolkikh peremennykh s ogranichennymi variatsiyami dlya chislennogo resheniya dvumernykh nekorrektnykh zadach”, Sib. zhurn. vychisl. matematiki, 2:3 (1999), 257–271 | Zbl

[12] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya dvumernykh nekorrektnykh zadach s razryvnymi resheniyami: chislennyi analiz”, Zhurn. vychisl. matematiki i mat. fiziki, 39:12 (1999), 1939–1944 | MR | Zbl

[13] Leonov A. S., “O skhodimosti po polnym variatsiyam regulyarizuyuschikh algoritmov resheniya nekorrektno postavlennykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 47:5 (2007), 767–783 | MR | Zbl

[14] Acar R., Vogel C. R., “Analysis of bounded variation penalty method for ill-posed problems”, Inverse Probl., 10 (1994), 1217–1229 | DOI | MR | Zbl

[15] Clarkson J. A., Adams C. R., “On definition of bounded variation for functions of two variables”, Trans. Amer. Math. Soc., 35:4 (1933), 824–854 | DOI | MR | Zbl | Zbl

[16] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955, 220 pp.

[17] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989, 240 pp. | MR

[18] Leonov A. S., “Zamechanie o polnoi variatsii funktsii neskolkikh peremennykh i mnogomernom analoge printsipa vybora Khelli”, Mat. zametki, 63:1 (1998), 69–80 | MR | Zbl

[19] Hobson E. W., The theory of functions of a real variable and the theory of Fouriers series, v. 1, 3rd ed., Cambridge Univ. Press, Cambridge, 1927, 690 pp. | Zbl

[20] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 484 pp. | MR

[21] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[22] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, URSS, M., 2009, 326 pp.

[23] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987, 240 pp. | MR

[24] Leonov A. S., “Funktsionaly s $H$-svoistvom v prostranstve Soboleva $W_1^1$”, Mat. sb., 195:6 (2004), 121–136 | MR | Zbl

[25] Leonov A. S., “Ob $H$-svoistve funktsionalov v prostranstvakh Soboleva”, Mat. zametki, 77:3 (2005), 378–394 | MR | Zbl

[26] Vinokurov V. A., “O ponyatii regulyarizuemosti razryvnykh otobrazhenii”, Zhurn. vychisl. matematiki i mat. fiziki, 11:5 (1971), 1097–1112 | MR | Zbl

[27] M. A. Krasnoselskii [i dr.], Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR

[28] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959, 470 pp.

[29] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR