Reconstruction of boundary controls in parabolic systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 178-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper an inverse dynamic problem is considered. It consists in reconstructing a priori unknown boundary controls in dynamic systems described by boundary problems for parabolic partial differential equations. The source information for solving the inverse problem is results of approximate measurements of a states of the observed system's motion. The problem is solved in static case, i.e. we can use all the accumulated during the definite observation period data of measurements to solve the problem. The problem under consideration is ill-posed. We propose the Tikhonov method with stabilizer containing sum of mean-square norm and total variation of control in time to solve the problem. The usage of such non-differentiable stabilizer lets obtain more precise results in some cases than approximation of the desired control in Lebesgue spaces does. In particular, this way provides the pointwise and piecewise uniform convergences of regularized approximations and permits numerical reconstruction of desired control's subtle structure. In this paper we describe and validate the gradient projection technique of receiving minimizing sequence for the Tikhonov functional. Also we demonstrate two-stage finite-dimensional approximation of the problem and present results of computational modeling.
Keywords: dynamical system, control, measurement, regularization, inverse problem, Tikhonov's method
Mots-clés : reconstruction, observation, variation, piecewise uniform convergence.
@article{TIMM_2012_18_1_a13,
     author = {A. I. Korotkii and D. O. Mikhailova},
     title = {Reconstruction of boundary controls in parabolic systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {178--197},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a13/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. O. Mikhailova
TI  - Reconstruction of boundary controls in parabolic systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 178
EP  - 197
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a13/
LA  - ru
ID  - TIMM_2012_18_1_a13
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. O. Mikhailova
%T Reconstruction of boundary controls in parabolic systems
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 178-197
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a13/
%G ru
%F TIMM_2012_18_1_a13
A. I. Korotkii; D. O. Mikhailova. Reconstruction of boundary controls in parabolic systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 178-197. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a13/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: Dynamical Solutions, Gordon and Breach, L., 1995, 625 pp. | MR | Zbl

[5] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[6] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[7] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[8] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000, 304 pp.

[9] Krutko P. D., Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineinye modeli, Nauka, M., 1988, 332 pp. | MR

[10] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[11] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[12] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 288 pp. | MR

[13] Ageev A. L., “Regulyarizatsiya nelineinykh operatornykh uravnenii na klasse razryvnykh funktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 20:4 (1980), 819–826 | MR | Zbl

[14] Vasin V. V., “Regulyarizatsiya i diskretnaya approksimatsiya nekorrektnykh zadach v prostranstve funktsii ogranichennoi variatsii”, Dokl. RAN, 376:1 (2001), 11–14 | MR

[15] Vasin V. V., “Ustoichivaya approksimatsiya negladkikh reshenii nekorrektno postavlennykh zadach”, Dokl. RAN, 402:5 (2005), 586–589 | MR

[16] Vasin V. V., “Approksimatsiya negladkikh reshenii lineinykh nekorrektnykh zadach”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 64–77 | MR | Zbl

[17] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functional”, Jornal of Inverse and Ill-Posed Problems, 15:8 (2007), 853–865 | DOI | MR | Zbl

[18] Vasin V. V., Serezhnikova T. I., “Ob odnom algoritme resheniya uravneniya Fredgolma–Stiltesa”, Izv. vuzov. Matematika, 2001, no. 4, 3–10 | MR | Zbl

[19] Vasin V. V., Serezhnikova T. I., “Dvukhetapnyi metod approksimatsii negladkikh reshenii i vosstanovlenie zashumlennogo izobrazheniya”, Avtomatika i telemekhanika, 2004, no. 2, 126–135 | MR | Zbl

[20] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 212 pp. | MR | Zbl

[21] Leonov A. S., “Regularization of ill-posed problems in Sobolev space $W_1^1$”, J. Inverse and Ill-Posed Probl., 13:6 (2005), 595–619 | MR | Zbl

[22] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya nekorrektnykh zadach s razryvnymi resheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 22:3 (1982), 516–531 | MR | Zbl

[23] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, LIBROKOM, M., 2010, 326 pp.

[24] Giusti E., Minimal surfaces and functions of bounded variations, Birkhauser, Basel, 1984, 239 pp. | MR | Zbl

[25] Acar R., Vogel C. R., “Analysis of bounded variation penalty method for ill-posed problems”, Inverse Probl., 10 (1994), 1217–1229 | DOI | MR | Zbl

[26] Chavent G., Kunish K., “Regularization of linear least squares problems by total bounded variation control”, Optimization and Calculus of Variation, 2 (1997), 359–376 | DOI | MR | Zbl

[27] Vogel C. R., Computation methods for inverse problems, SIAM, Philadelphia, 2002, 183 pp. | MR | Zbl

[28] Korotkii M. A., “Vosstanovlenie upravlenii i parametrov metodom Tikhonova s negladkimi stabilizatorami”, Izv. vuzov. Matematika, 2009, no. 2, 76–82 | MR | Zbl

[29] Korotkii M. A., “Vosstanovlenie upravlenii staticheskim i dinamicheskim metodami regulyarizatsii s negladkimi stabilizatorami”, Prikl. matematika i mekhanika, 73:1 (2009), 39–53 | MR

[30] Korotkii M. A., Metod regulyarizatsii Tikhonova s negladkimi stabilizatorami, Dis. $\dots$ kand. fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 2009, 132 pp.

[31] Soboleva D. O., “Rekonstruktsiya upravlenii v parabolicheskikh sistemakh”, Vestn. Buryatskogo gos. un-ta. Matematika i informatika, 2010, no. 9, 59–67

[32] Korotkii A. I., Mikhailova D. O., “Vosstanovlenie upravlenii v parabolicheskikh sistemakh metodom Tikhonova s negladkimi stabilizatorami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 211–227

[33] Korotkii A. I., Gribanova E. I., “Vosstanovlenie upravlenii v giperbolicheskikh sistemakh metodom Tikhonova s negladkimi stabilizatorami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2010, 99–108

[34] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[35] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[36] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[37] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[38] Korotkii A. I., Pryamye i obratnye zadachi upravlyaemykh sistem s raspredelennymi parametrami, Dis. $\dots$ dokt. fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 1993, 331 pp.

[39] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002, 824 pp.

[40] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[41] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[42] Demyanov V. F., Vasilev V. P., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[43] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[44] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 496 pp. | MR | Zbl

[45] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR