Strictly Deza line graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 165-177

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given graph $G$, its line graph $L(G)$ is a graph such that its vertices represent the edges of $G$ and two vertices are adjacent if and only if the corresponding edges of $G$ have exactly one common vertex. A $k$-regular graph of diameter 2 with $v$ vertices is called a strictly Deza graph with parameters $(v,k,b,a)$ if it is not strongly regular and any two vertices have either $a$ or $b$ common neighbors. We present a classification of strictly Deza graphs that are line graphs.
Keywords: line graphs, strictly Deza graphs.
@article{TIMM_2012_18_1_a12,
     author = {V. V. Kabanov and A. V. Mityanina},
     title = {Strictly {Deza} line graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {165--177},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - A. V. Mityanina
TI  - Strictly Deza line graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 165
EP  - 177
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/
LA  - ru
ID  - TIMM_2012_18_1_a12
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A A. V. Mityanina
%T Strictly Deza line graphs
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 165-177
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/
%G ru
%F TIMM_2012_18_1_a12
V. V. Kabanov; A. V. Mityanina. Strictly Deza line graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 165-177. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/