Strictly Deza line graphs
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 165-177
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a given graph $G$, its line graph $L(G)$ is a graph such that its vertices represent the edges of $G$ and two vertices are adjacent if and only if the corresponding edges of $G$ have exactly one common vertex. A $k$-regular graph of diameter 2 with $v$ vertices is called a strictly Deza graph with parameters $(v,k,b,a)$ if it is not strongly regular and any two vertices have either $a$ or $b$ common neighbors. We present a classification of strictly Deza graphs that are line graphs.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
line graphs, strictly Deza graphs.
                    
                  
                
                
                @article{TIMM_2012_18_1_a12,
     author = {V. V. Kabanov and A. V. Mityanina},
     title = {Strictly {Deza} line graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {165--177},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/}
}
                      
                      
                    V. V. Kabanov; A. V. Mityanina. Strictly Deza line graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 165-177. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/
