Strictly Deza line graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 165-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a given graph $G$, its line graph $L(G)$ is a graph such that its vertices represent the edges of $G$ and two vertices are adjacent if and only if the corresponding edges of $G$ have exactly one common vertex. A $k$-regular graph of diameter 2 with $v$ vertices is called a strictly Deza graph with parameters $(v,k,b,a)$ if it is not strongly regular and any two vertices have either $a$ or $b$ common neighbors. We present a classification of strictly Deza graphs that are line graphs.
Keywords: line graphs, strictly Deza graphs.
@article{TIMM_2012_18_1_a12,
     author = {V. V. Kabanov and A. V. Mityanina},
     title = {Strictly {Deza} line graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {165--177},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - A. V. Mityanina
TI  - Strictly Deza line graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 165
EP  - 177
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/
LA  - ru
ID  - TIMM_2012_18_1_a12
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A A. V. Mityanina
%T Strictly Deza line graphs
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 165-177
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/
%G ru
%F TIMM_2012_18_1_a12
V. V. Kabanov; A. V. Mityanina. Strictly Deza line graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 165-177. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a12/

[1] Deza A., Deza M., “The ridge graph of the metric polytope and some relatives”, Polytopes: Abstract, convex and computational, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 440, eds. T. Bisztriczky et al., Kluwer Acad. Publ., Dordrecht, 1994, 359–372 | MR | Zbl

[2] M. Erickson [et al.], “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs, 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[3] Krausz J., “Demonstration nouvelle d'une deWhitney sur les réseaux”, Mat. Fiz., 50 (1943), 75–89 | MR

[4] van Rooij A., Wilf H., “The interchange graphs of a finite graph”, Acta Math. Acad. Sci. Hungar., 16 (1965), 263–269 | DOI | MR | Zbl

[5] Seidel J. J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue”, Lin. Alg. Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[6] Goryainov S. V., Shalaginov L. V., “O grafakh Deza na 14, 15 i 16 vershinakh”, Sib. elektron. mat. izv., 8 (2011), 105–115 | MR

[7] Makhnev A. A., Paduchikh D. V., “Ob odnom klasse koreberno regulyarnykh grafov”, Izv. RAN. Ser. mat., 69:6 (2005), 95–114 | MR | Zbl