On the use of a priori information in coefficient inverse problems for hyperbolic equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 147-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Numerical algorithms for solving inverse coefficient problems for hyperbolic equations based on the use of a priori information on the solution are considered. Optimization algorithms and a dynamic version of the Gelfand–Levitan–Krein method are investigated. The boundedness of the solution and of its first derivative are used as a priori information. Convergence rate estimates are derived. The results of numerical simulations are presented.
Keywords: coefficient inverse problems for hyperbolic equations, Gelfand–Levitan equation, optimization methods, regularization
Mots-clés : a priori information.
@article{TIMM_2012_18_1_a11,
     author = {S. I. Kabanikhin and M. A. Shishlenin},
     title = {On the use of a~priori information in coefficient inverse problems for hyperbolic equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {147--164},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/}
}
TY  - JOUR
AU  - S. I. Kabanikhin
AU  - M. A. Shishlenin
TI  - On the use of a priori information in coefficient inverse problems for hyperbolic equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 147
EP  - 164
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/
LA  - ru
ID  - TIMM_2012_18_1_a11
ER  - 
%0 Journal Article
%A S. I. Kabanikhin
%A M. A. Shishlenin
%T On the use of a priori information in coefficient inverse problems for hyperbolic equations
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 147-164
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/
%G ru
%F TIMM_2012_18_1_a11
S. I. Kabanikhin; M. A. Shishlenin. On the use of a priori information in coefficient inverse problems for hyperbolic equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 147-164. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/

[1] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 258 pp. | MR

[2] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2005, 199 pp. | MR

[3] S. K. Godunov [i dr.], Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1992, 456 pp. | Zbl

[4] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauch. izd-vo, Novosibirsk, 2008, 460 pp.

[5] Kabanikhin S. I., Shishlenin M. A., “Sravnitelnyi analiz chislennykh metodov resheniya obratnoi zadachi dlya volnovogo uravneniya”, Obratnye zadachi i informatsionnye tekhnologii, 1:1 (2002), 49–72

[6] A. N. Tikhonov [i dr.], Regulyariziruyuschie algoritmy i apriornaya informatsiya, Nauka, Moskva, 1983, 198 pp. | MR | Zbl

[7] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, Moskva, 1984, 264 pp. | MR

[8] Azamatov J. S., Kabanikhin S. I., “Nonlinear Volterra operator equations. $L_2$-theory”, J. Inverse Ill-Posed Probl., 7:6 (1999), 487–510 | DOI | MR | Zbl

[9] He S., Kabanikhin S. I., “An optimization approach to a three-dimensional acoustic inverse problem in the time domain”, J. Math. Phys., 36:8 (1995), 4028–4043 | DOI | MR | Zbl

[10] Kabanikhin S. I., Ayapbergenova A. T., “Estimation of the rate of convergence of the Landweber iteration method in an inverse problem of acoustics”, Proc. of the Steklov Institute of Mathematics, 2002, S75–S97 | MR | Zbl

[11] Kabanikhin S. I., Kowar R., Scherzer O., “On the Landweber iteration for the solution of parameter identification problem in a hyperbolic partial differential equation of second order”, J. Inverse Ill-Posed Probl., 6:5 (1998), 403–430 | DOI | MR | Zbl

[12] Kabanikhin S. I., Satybaev A. D., Shishlenin M. A., Direct methods of solving inverse multidimensional hyperbolic problems, VSP, Utrecht, 2005, 179 pp. | MR | Zbl

[13] Kabanikhin S. I., Scherzer O., Shishlenin M. A., “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. Inverse Ill-Posed Probl., 11:1 (2003), 87–109 | DOI | MR | Zbl

[14] Kabanikhin S. I., Shishlenin M. A., “Quasi-solution in inverse coefficient problems”, J. Inverse Ill-Posed Probl., 16:7 (2008), 705–713 | DOI | MR | Zbl

[15] Titarenko V., Yagola A., “Error estimation for ill-posed problems on piecewise convex functions and sourcewise represented sets”, J. Inverse Ill-Posed Probl., 16:6 (2008), 625–638 | DOI | MR | Zbl

[16] Vasin V. V., “On convergence of gradient type methods for nonlinear equations”, Doklady RAS, 359:1 (1998), 7–9 | MR | Zbl

[17] Vasin V., Skorik G., “Iterative processes of gradient type with applications to gravimetry and magnetometry inverse problems”, J. Inverse Ill-Posed Probl., 18:8 (2010), 855–876 | DOI | MR