Mots-clés : a priori information.
@article{TIMM_2012_18_1_a11,
author = {S. I. Kabanikhin and M. A. Shishlenin},
title = {On the use of a~priori information in coefficient inverse problems for hyperbolic equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {147--164},
year = {2012},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/}
}
TY - JOUR AU - S. I. Kabanikhin AU - M. A. Shishlenin TI - On the use of a priori information in coefficient inverse problems for hyperbolic equations JO - Trudy Instituta matematiki i mehaniki PY - 2012 SP - 147 EP - 164 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/ LA - ru ID - TIMM_2012_18_1_a11 ER -
%0 Journal Article %A S. I. Kabanikhin %A M. A. Shishlenin %T On the use of a priori information in coefficient inverse problems for hyperbolic equations %J Trudy Instituta matematiki i mehaniki %D 2012 %P 147-164 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/ %G ru %F TIMM_2012_18_1_a11
S. I. Kabanikhin; M. A. Shishlenin. On the use of a priori information in coefficient inverse problems for hyperbolic equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 147-164. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a11/
[1] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 258 pp. | MR
[2] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2005, 199 pp. | MR
[3] S. K. Godunov [i dr.], Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1992, 456 pp. | Zbl
[4] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauch. izd-vo, Novosibirsk, 2008, 460 pp.
[5] Kabanikhin S. I., Shishlenin M. A., “Sravnitelnyi analiz chislennykh metodov resheniya obratnoi zadachi dlya volnovogo uravneniya”, Obratnye zadachi i informatsionnye tekhnologii, 1:1 (2002), 49–72
[6] A. N. Tikhonov [i dr.], Regulyariziruyuschie algoritmy i apriornaya informatsiya, Nauka, Moskva, 1983, 198 pp. | MR | Zbl
[7] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, Moskva, 1984, 264 pp. | MR
[8] Azamatov J. S., Kabanikhin S. I., “Nonlinear Volterra operator equations. $L_2$-theory”, J. Inverse Ill-Posed Probl., 7:6 (1999), 487–510 | DOI | MR | Zbl
[9] He S., Kabanikhin S. I., “An optimization approach to a three-dimensional acoustic inverse problem in the time domain”, J. Math. Phys., 36:8 (1995), 4028–4043 | DOI | MR | Zbl
[10] Kabanikhin S. I., Ayapbergenova A. T., “Estimation of the rate of convergence of the Landweber iteration method in an inverse problem of acoustics”, Proc. of the Steklov Institute of Mathematics, 2002, S75–S97 | MR | Zbl
[11] Kabanikhin S. I., Kowar R., Scherzer O., “On the Landweber iteration for the solution of parameter identification problem in a hyperbolic partial differential equation of second order”, J. Inverse Ill-Posed Probl., 6:5 (1998), 403–430 | DOI | MR | Zbl
[12] Kabanikhin S. I., Satybaev A. D., Shishlenin M. A., Direct methods of solving inverse multidimensional hyperbolic problems, VSP, Utrecht, 2005, 179 pp. | MR | Zbl
[13] Kabanikhin S. I., Scherzer O., Shishlenin M. A., “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. Inverse Ill-Posed Probl., 11:1 (2003), 87–109 | DOI | MR | Zbl
[14] Kabanikhin S. I., Shishlenin M. A., “Quasi-solution in inverse coefficient problems”, J. Inverse Ill-Posed Probl., 16:7 (2008), 705–713 | DOI | MR | Zbl
[15] Titarenko V., Yagola A., “Error estimation for ill-posed problems on piecewise convex functions and sourcewise represented sets”, J. Inverse Ill-Posed Probl., 16:6 (2008), 625–638 | DOI | MR | Zbl
[16] Vasin V. V., “On convergence of gradient type methods for nonlinear equations”, Doklady RAS, 359:1 (1998), 7–9 | MR | Zbl
[17] Vasin V., Skorik G., “Iterative processes of gradient type with applications to gravimetry and magnetometry inverse problems”, J. Inverse Ill-Posed Probl., 18:8 (2010), 855–876 | DOI | MR