Inverse problem for a~hyperbolic equation with a~nonlocal boundary condition containing a~delay argument
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 139-146

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial-boundary value problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument. The inverse problem is formulated, which consists in finding the unknown coefficient of the hyperbolic equation from a solution of the initial-boundary value problem specified at a fixed time. An existence theorem for a solution of the inverse problem is proved.
Keywords: hyperbolic equation, delay argument, inverse problem, existence theorem.
Mots-clés : nonlocal condition
@article{TIMM_2012_18_1_a10,
     author = {A. M. Denisov},
     title = {Inverse problem for a~hyperbolic equation with a~nonlocal boundary condition containing a~delay argument},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/}
}
TY  - JOUR
AU  - A. M. Denisov
TI  - Inverse problem for a~hyperbolic equation with a~nonlocal boundary condition containing a~delay argument
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 139
EP  - 146
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/
LA  - ru
ID  - TIMM_2012_18_1_a10
ER  - 
%0 Journal Article
%A A. M. Denisov
%T Inverse problem for a~hyperbolic equation with a~nonlocal boundary condition containing a~delay argument
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 139-146
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/
%G ru
%F TIMM_2012_18_1_a10
A. M. Denisov. Inverse problem for a~hyperbolic equation with a~nonlocal boundary condition containing a~delay argument. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/