Inverse problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 139-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study an initial-boundary value problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument. The inverse problem is formulated, which consists in finding the unknown coefficient of the hyperbolic equation from a solution of the initial-boundary value problem specified at a fixed time. An existence theorem for a solution of the inverse problem is proved.
Keywords: hyperbolic equation, delay argument, inverse problem, existence theorem.
Mots-clés : nonlocal condition
@article{TIMM_2012_18_1_a10,
     author = {A. M. Denisov},
     title = {Inverse problem for a~hyperbolic equation with a~nonlocal boundary condition containing a~delay argument},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--146},
     year = {2012},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/}
}
TY  - JOUR
AU  - A. M. Denisov
TI  - Inverse problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 139
EP  - 146
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/
LA  - ru
ID  - TIMM_2012_18_1_a10
ER  - 
%0 Journal Article
%A A. M. Denisov
%T Inverse problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 139-146
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/
%G ru
%F TIMM_2012_18_1_a10
A. M. Denisov. Inverse problem for a hyperbolic equation with a nonlocal boundary condition containing a delay argument. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a10/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999, 798 pp. | MR

[2] M. A. Krasnoselskii [i dr.], Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[3] Isakov V., “Inverse parabolic problem with the final overdetermination”, Comm. Pure Appl. Math., 44 (1991), 185–209 | DOI | MR | Zbl

[4] Prilepko A. I., Kostin A .B., “Obratnaya zadacha opredeleniya koeffitsienta parabolicheskogo uravneniya”, Sib. mat. zhurn., 33:3 (1992), 146–155 | MR | Zbl

[5] Denisov A. M., Shores T. S., “An inverse coefficient problem for an integro-differential equation”, Appl. Anal., 81 (2002), 725–752 | DOI | MR | Zbl

[6] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[7] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2005, 200 pp. | MR