Some new classes of inverse coefficient problems in nonlinear mechanics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 20-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present study deals with the following two types of inverse problems governed by nonlinear PDEs, and related to determination of unknown properties of engineering materials based on boundary/surface measured data. The first inverse problem consists of identifying the unknown coefficient $g(\xi^2)$ (plasticity function) in the nonlinear differential equation of torsional creep $-(g(|\nabla u|^2)u_{x_1})_{x_1}-(g(|\nabla u|^2)u_{x_2})_{x_2}= 2\phi$, $x\in\Omega\subset\mathbb R^2$, from the torque (or torsional rigidity) $\mathcal T(\phi)$, given experimentally. The second class of inverse problems is related to identification of the unknown coefficient $g(\xi^2)$ in the nonlinear bending equation $Au\equiv(g(\xi^2(u))(u_{x_1x_1}+u_{x_2x_2}/2))_{x_1x_1}+(g(\xi^2(u))u_{x_1x_2})_{x_1x_2}+(g(\xi^2(u))(u_{x_2x_2}+u_{x_1x_1}/2))_{x_2x_2}=F(x)$, $x\in\Omega\subset\mathbb R^2$. The boundary measured data here is assumed to be the deflections $w_i[\tau_k]:=w(\lambda_i;\tau_k)$, measured during the quasi-static bending process, given by the parameter $\tau_k$, $k=\overline{1,K}$, at some points $\lambda_i=(x_1^{(i)},x_2^{(i)})$, $i=\overline{1,M}$, of a plate. Based on obtained continuity property of the direct problem solution with respect to coefficients, and compactness of the set of admissible coefficients, an existence of quasi-solutions of the considered inverse problems are proved. Some numerical results, useful from the points of view of nonlinear mechanics and computational material science, are demonstrated. Keywords: inverse coefficient problem, material properties, quasisolution method.
Keywords: material properties, quasisolution method.
Mots-clés : inverse coefficient problem
@article{TIMM_2012_18_1_a1,
     author = {A. Kh. Khasanov},
     title = {Some new classes of inverse coefficient problems in nonlinear mechanics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {20--33},
     year = {2012},
     volume = {18},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a1/}
}
TY  - JOUR
AU  - A. Kh. Khasanov
TI  - Some new classes of inverse coefficient problems in nonlinear mechanics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 20
EP  - 33
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a1/
LA  - en
ID  - TIMM_2012_18_1_a1
ER  - 
%0 Journal Article
%A A. Kh. Khasanov
%T Some new classes of inverse coefficient problems in nonlinear mechanics
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 20-33
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a1/
%G en
%F TIMM_2012_18_1_a1
A. Kh. Khasanov. Some new classes of inverse coefficient problems in nonlinear mechanics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 20-33. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a1/

[1] Adams R. A., Sobolev spaces, Academic Press, New York, 1975, 286 pp. | MR | Zbl

[2] Fleck N. A., Hutchinson J. W., “A reformulation of strain gradient plasticity”, J. Mech. Phys. Solids, 49 (2001), 2245–2271 | DOI | Zbl

[3] Gajewski H., Groger K., Zacharias K., Nichtlineare Operator Gleichungen und Operator Differential Gleichungen, Akademie-Verlag, Berlin, 1974, 281 pp. | Zbl

[4] Hasanov A., Mamedov A., “An inverse problem related to the determination of elastoplastic properties of a plate”, Inverse Probl., 10 (1994), 601–615 | DOI | MR | Zbl

[5] Hasanov A., “An Inverse coefficient problem for an elasto-plastic medium”, SIAM J. Appl. Math., 55 (1995), 1736–1752 | DOI | MR

[6] Hasanov A., “Inverse coefficient problems for monotone potential operators”, Inverse Probl., 13 (1997), 1265–1278 | DOI | MR | Zbl

[7] Hasanov A., “Convexity argument for monotone potential operators”, Nonlinear Anal. Theory Methods Appl., 47 (2000), 906–918 | MR

[8] Hasanov A., “Variational approach to non-linear boundary value problems for elasto-plastic incompressible bending plate”, Int. J. Non-Linear Mech., 42 (2007), 711–721 | DOI | MR | Zbl

[9] Hasanov A., Erdem A., “Determination of unknown coefficient in a nonlinear elliptic problem related to the elasto-plastic torsion of a bar”, IMA J. Appl. Math., 73 (2008), 579–591 | DOI | MR | Zbl

[10] Hasanov A., Tatar S., “Semi-analytic inversion method for determination of elastoplastic properties of power hardening materials from limited torsional experiment”, Inverse Probl. in Science and Engineering, 18 (2010), 265–278 | DOI | MR | Zbl

[11] Hasanov A., Tatar S., “An inversion method for identification of elastoplastic properties of a beam from torsional experiment”, Int. J. Non-Linear Mech., 45 (2010), 562–571 | DOI

[12] Hasanov A., “Some new classes of inverse coefficient problems in nonlinear mechanics and computational material science”, Int. J. Non-Linear Mech., 46 (2011), 667–684 | DOI

[13] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Nauka, Moscow, 1978, 206 pp. | MR

[14] Ladyzhenskaya O. A., The boundary value problems in mathematical physics, Springer, New York, 1985, 322 pp. | MR

[15] Mamedov A., “An Inverse problem related to the determination of elastoplastic properties of a cylindirical bar”, Int. J. Non-Linear Mech., 30 (1965), 23–32 | DOI | MR

[16] Samarskii A. A., Andreev V. B., Difference methods for elliptic problems, Nauka, Moscow, 1976, 352 pp. (in Russian) | MR

[17] Tikhonov A., Arsenin V., Solution of ill-posed problems, John Wiley, New York, 1977, 258 pp. | MR | Zbl