Mots-clés : inverse coefficient problem
@article{TIMM_2012_18_1_a1,
author = {A. Kh. Khasanov},
title = {Some new classes of inverse coefficient problems in nonlinear mechanics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {20--33},
year = {2012},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a1/}
}
A. Kh. Khasanov. Some new classes of inverse coefficient problems in nonlinear mechanics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 1, pp. 20-33. http://geodesic.mathdoc.fr/item/TIMM_2012_18_1_a1/
[1] Adams R. A., Sobolev spaces, Academic Press, New York, 1975, 286 pp. | MR | Zbl
[2] Fleck N. A., Hutchinson J. W., “A reformulation of strain gradient plasticity”, J. Mech. Phys. Solids, 49 (2001), 2245–2271 | DOI | Zbl
[3] Gajewski H., Groger K., Zacharias K., Nichtlineare Operator Gleichungen und Operator Differential Gleichungen, Akademie-Verlag, Berlin, 1974, 281 pp. | Zbl
[4] Hasanov A., Mamedov A., “An inverse problem related to the determination of elastoplastic properties of a plate”, Inverse Probl., 10 (1994), 601–615 | DOI | MR | Zbl
[5] Hasanov A., “An Inverse coefficient problem for an elasto-plastic medium”, SIAM J. Appl. Math., 55 (1995), 1736–1752 | DOI | MR
[6] Hasanov A., “Inverse coefficient problems for monotone potential operators”, Inverse Probl., 13 (1997), 1265–1278 | DOI | MR | Zbl
[7] Hasanov A., “Convexity argument for monotone potential operators”, Nonlinear Anal. Theory Methods Appl., 47 (2000), 906–918 | MR
[8] Hasanov A., “Variational approach to non-linear boundary value problems for elasto-plastic incompressible bending plate”, Int. J. Non-Linear Mech., 42 (2007), 711–721 | DOI | MR | Zbl
[9] Hasanov A., Erdem A., “Determination of unknown coefficient in a nonlinear elliptic problem related to the elasto-plastic torsion of a bar”, IMA J. Appl. Math., 73 (2008), 579–591 | DOI | MR | Zbl
[10] Hasanov A., Tatar S., “Semi-analytic inversion method for determination of elastoplastic properties of power hardening materials from limited torsional experiment”, Inverse Probl. in Science and Engineering, 18 (2010), 265–278 | DOI | MR | Zbl
[11] Hasanov A., Tatar S., “An inversion method for identification of elastoplastic properties of a beam from torsional experiment”, Int. J. Non-Linear Mech., 45 (2010), 562–571 | DOI
[12] Hasanov A., “Some new classes of inverse coefficient problems in nonlinear mechanics and computational material science”, Int. J. Non-Linear Mech., 46 (2011), 667–684 | DOI
[13] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Nauka, Moscow, 1978, 206 pp. | MR
[14] Ladyzhenskaya O. A., The boundary value problems in mathematical physics, Springer, New York, 1985, 322 pp. | MR
[15] Mamedov A., “An Inverse problem related to the determination of elastoplastic properties of a cylindirical bar”, Int. J. Non-Linear Mech., 30 (1965), 23–32 | DOI | MR
[16] Samarskii A. A., Andreev V. B., Difference methods for elliptic problems, Nauka, Moscow, 1976, 352 pp. (in Russian) | MR
[17] Tikhonov A., Arsenin V., Solution of ill-posed problems, John Wiley, New York, 1977, 258 pp. | MR | Zbl