Finite groups with independent abelian subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 88-91
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe finite groups all of whose abelian subgroups are independent. A subgroup $H$ of a group $G$ is called independent if $N_G(U)\leq N_G(H)$ for any nontrivial subgroup $U$ of $H$.
Keywords: finite group, independent subgroup, normalizer embeddability.
@article{TIMM_2011_17_4_a8,
     author = {A. Kh. Zhurtov and A. A. Tsirkhov},
     title = {Finite groups with independent abelian subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {88--91},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a8/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - A. A. Tsirkhov
TI  - Finite groups with independent abelian subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 88
EP  - 91
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a8/
LA  - ru
ID  - TIMM_2011_17_4_a8
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A A. A. Tsirkhov
%T Finite groups with independent abelian subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 88-91
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a8/
%G ru
%F TIMM_2011_17_4_a8
A. Kh. Zhurtov; A. A. Tsirkhov. Finite groups with independent abelian subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 88-91. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a8/

[1] Zhurtov A. Kh., Tsirkhov A. A., “O konechnykh gruppakh s nezavisimymi podgruppami”, Vladikavkaz. mat. zhurn., 12:4 (2010), 15–20 | MR | Zbl

[2] Shidov L. I., “O konechnykh gruppakh s normalizatornym usloviem”, Sib. mat. zhurn., 21:6 (1980), 141–145 | MR | Zbl

[3] Kholl M., Teoriya grupp, IL, M., 1982, 468 pp.

[4] Suzuki M., “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math., 82:2 (1965), 191–212 | DOI | MR | Zbl

[5] Feit W., Thompson J. G., “Solvability of groups of odd order”, Pacif. J. Math., 13:4 (1963), 755–1029 | MR

[6] Wilson R. A., The finite simple groups, Springer, London, 2009, 298 pp. | MR

[7] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1979, 796 pp. | Zbl