On a periodic Shunkov group saturated by direct products of finite elementary abelian 2-groups and $L_2(2^n)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 83-87
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Re$ be a set of groups. A group $G$ is said to be saturated by groups from $\Re$ if any finite subgroup from $G$ is contained in a subgroup of $G$ isomorphic to some group from $\Re$. It is proved that a periodic Shunkov group saturated by groups from the set $\Re=\{L_2(2^k)\times I_n\mid n\in N\}$, where $I_n$ is the direct product of $n$ copies of groups of order 2 and $k$ is a fixed number, is locally finite.
Keywords: periodic group, Shunkov group
Mots-clés : saturation.
@article{TIMM_2011_17_4_a7,
     author = {A. A. Duzh and A. A. Shlepkin},
     title = {On a~periodic {Shunkov} group saturated by direct products of finite elementary abelian 2-groups and $L_2(2^n)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--87},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a7/}
}
TY  - JOUR
AU  - A. A. Duzh
AU  - A. A. Shlepkin
TI  - On a periodic Shunkov group saturated by direct products of finite elementary abelian 2-groups and $L_2(2^n)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 83
EP  - 87
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a7/
LA  - ru
ID  - TIMM_2011_17_4_a7
ER  - 
%0 Journal Article
%A A. A. Duzh
%A A. A. Shlepkin
%T On a periodic Shunkov group saturated by direct products of finite elementary abelian 2-groups and $L_2(2^n)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 83-87
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a7/
%G ru
%F TIMM_2011_17_4_a7
A. A. Duzh; A. A. Shlepkin. On a periodic Shunkov group saturated by direct products of finite elementary abelian 2-groups and $L_2(2^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 83-87. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a7/

[1] Kargapolov M. I., “O probleme O. Yu. Shmidta”, Sib. mat. zhurn., 4:1 (1963), 232–235 | MR | Zbl

[2] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR | Zbl

[3] Panyushkin D. N., Tukhvatullina L. R., Filippov K. A., “O periodicheskoi gruppe Shunkova, nasyschennoi tsentralnymi rasshireniyami konechnykh 2-grupp posredstvom gruppy $L_2(5)$”, Vest. NGU. Matematika, mekhanika, informatika, 10:1 (2010), 88–92

[4] Rubashkin A. G., Filippov K. A., “O periodicheskikh gruppakh, nasyschennykh $L_2(p^n)$”, Sib. mat. zhurn., 46:6 (2005), 1388–1392 | MR | Zbl

[5] Shlepkin A. K., Gruppy Shunkova s dopolnitelnymi ogranicheniyami, dis. $\dots$ d-ra fiz.-mat. nauk, Krasnoyarsk, 1998, 130 pp.

[6] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 794 pp. | MR | Zbl